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1 Introduction 

Several empirical findings on the actual saving and investment decisions of U.S. 

households are not well-predicted by standard life-cycle models of the optimal consumption 

and portfolio choices of a representative investor (pioneered by Cocco, Gomes, and Maenhout 

2005). This evidence includes the significant proportion of households not participating in the 

stock market (Haliassos and Bertaut 1995; Campbell 2006; Gomes and Smirnova 2021), a flat 

or mildly hump-shaped life-cycle pattern of portfolio shares invested in the stock market by 

participants (Heaton and Lucas 2000; Ameriks and Zeldes 2004; Catherine 2022), a high level 

of financial wealth late in life (Love et al. 2009; Lockwood 2018), and a positive relationship 

between the stock market share and shareholders’ financial wealth (Wachter and Yogo 2010).1 

These discrepancies between evidence and model prediction (sometimes referred to as puzzles) 

grow when important non-financial decisions variables of private households are also included 

in life-cycle models. For example, including flexible work hours in addition to the consumption 

and portfolio choice decisions significantly increases the optimal fraction that households 

would optimally invest in the stock market, compared to the standard-life cycle model (Gomes 

et al. 2008). 

 Numerous extensions of the baseline life-cycle model have been proposed to resolve at 

least one of these puzzles. A large literature offers more refined modeling of the stochastic 

dynamics of capital market processes (such as stock market crashes), the law of motion for 

labor income (loss in human capital, cyclical skewness along the business cycle), or the 

relationship between innovations to stock returns and labor income (Benzoni et al. 2007; 

Campanale et al. 2015; Michaelides and Zhang 2017; Bagliano et al. 2019; Catherine 2022). A 

second group of studies include additional background risk such as medical shocks (De Nardi 

et al. 2010), or the impact of households’ pessimistic subjective beliefs by setting the risk 

premium of equity investments lower than observed in historical data (Dahlquist et al. 2018; 

Calvet et al. 2022). A third direction taken in prior work assumes significant stock market 

participation costs for a sizeable set of households, which discourages risky asset holding 

among those with low financial wealth (Gomes and Michaelides 2005; Kim et al. 2016; 

Fagereng 2017). Other researchers consider illiquid assets such as housing (Cocco 2005) or life 

 
1 This evidence and these puzzles are also existent for other countries as shown by Christelis et al. (2013), 

Badarinza et al. (2016), Bach et al. (2020), and Fagereng et al. (2020). 



2 

 

annuities (Inkmann et al. 2011) in life-cycle models. A fourth group of studies focuses on 

extended modeling of household preferences, such as the inclusion of a bequest motive 

(Ameriks et al. 2011) or non-standard preference specifications (Wachter and Yogo 2010; Pagel 

2018; Peijnenburg 2018; Calvet et al. 2022). Although some of these studies combine various 

model extensions, an approach that jointly replicates the empirical age patterns of private 

households during both the work and retirement phase for financial wealth holdings, labor 

supply, stock market participation, and the share of investments in equities, is not as yet 

available in the literature. 

 The present paper builds and calibrates a parsimonious life-cycle model that can fit the 

aforementioned stylized facts. We consider a utility maximizing household with an uncertain 

lifetime facing labor income and capital market exogenous risks. Each period it decides how 

many hours to work, how much to consume/save, and how to allocate its portfolio across risky 

stocks and riskless bonds. The household has recursive preferences over a composite good of 

consumption and leisure, a bequest motive, and – the main innovation of this paper – a stock 

market loss framing component. Stock market loss framing is defined as an additional disutility 

the household faces by experiencing investment losses relative to a reference return over the 

part of the portfolio invested in the stock market. Our approach follows previous work by 

Barberis and Huang (2009), but it requires only one additional preference parameter instead of 

two to incorporate loss aversion into a life-cycle model. Accordingly, this strategy offers 

significant advantages for empirical identification. 

 The proposed life-cycle model is estimated structurally using a two-stage approach. In the 

first stage, non-preference parameters (wage rates, capital markets, housing cost, and retirement 

income) are specified using U.S. data. Notably, we work with an equity risk premium equal to 

7.12% as observed in historical data, which is much higher than in many other studies on 

portfolio choice over the life-cycle (Cocco et al. 2005; Gomes and Michaelides 2005). In the 

second stage, all preference parameters are estimated using the simulated method of moments 

(SMM) approach, by targeting the empirical age patterns of observed ratios of stock market 

participants’ portfolio shares in stocks, their financial wealth-to-income ratio, and work hours. 

These empirical targets are derived from individual-level data from the Survey of Consumer 

Finances (SCF) and the Panel Study of Income Dynamics (PSID). We explicitly address life-

cycle effects by targeting seven age groups for each of the variables, from the beginning of a 
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household’s working life (i.e., at age 25) to retirement (up to age 80). In addition, we examine 

two subgroups of the population, namely stockholders and non-stockholders. 

To gain a deeper understanding of the proposed loss-framing preferences, we first focus 

our analysis on the important subset of households which participates in the stock market. We 

demonstrate that our structural life-cycle model with loss-framing preferences can 

simultaneously fit the three target variables remarkably well, namely the stock share, wealth-

to-income-ratio, and work hours. In the estimation, 20 of 21 moments predicted by the model 

lie within or near the 95% confidence bounds of their empirical counterparts. The mean relative 

error (MRE) between model prediction and empirical target over all 21 moments is only 3.60%. 

Our parameter estimates for relative risk aversion, time preference, and intertemporal elasticity 

of substitution are also plausible and in line with other life-cycle studies. Moreover, estimates 

for both the loss-framing parameter and the bequest parameter are significantly above zero.  

Second, a decomposition of the preference components according to their influence on 

results shows that the model fit with stock market loss-framing is far superior to other structural 

models lacking such a component. As such, compared to the data, models with traditional 

CRRA preferences (over consumption and leisure) including a bequest motive predict lower 

work hours, higher conditional stock market shares, and lower financial wealth-to-income 

ratios, especially for the middle-aged and older groups. For the CRRA model, the average 

deviation of predicted model moments from empirical targets is 20.71%, nearly six times larger 

than our model with stock market loss framing (3.60%). Models with Epstein-Zin preferences 

generate better matching results for conditional stock market shares, but they still underestimate 

work hours and financial wealth-to-income ratios; their average deviation of model moments 

vis-à-vis empirical counterparts is about five times larger than our loss-framing model (16.71% 

versus 3.60%). Further, many other models exhibit implausible extreme parameter estimates 

for the time discount factor, the coefficient of relative risk aversion, or the leisure preference.  

Third, while our loss framing model is well suited to explain the empirical mildly hump-

shaped and relatively low ratio of stock investments for the equity holder subgroup, it cannot 

additionally explain the prevalence of non-participation in the stock market in the overall 

population. To achieve this, the life-cycle model with loss framing must be extended. In 

particular, we show that a structural model with a single-representative agent and per-period 

stock market participations costs, in conjunction with loss-framing preferences, does generate 
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a reasonable match for four target variables over all seven age groups considered. The mean 

relative error of predicted 28 model moments in relation to their empirical targets is only 9.6%.  

Fourth, further improvement can be achieved if households are ex-ante heterogeneous with 

respect to participation costs and preferences. A loss-framing model with a representative agent 

for each of three subgroups (stockholders, non-stockholders, and blended) explains the data for 

the overall population much better than a simpler model with only one representative agent 

(MRE equals 4.3% versus 9.6%). Furthermore, consistent with the data, this richer approach 

predicts that stock-market participants are significantly wealthier than households not investing 

in equities. Finally, the model is able to produce increasing stock market participation rates and 

conditional equity shares with growing levels of financial wealth, as observed in the data.  

Our study contributes to three strands of prior literature. First, we build on studies which 

structurally estimate preference parameters to match key life-cycle target variables.2 Articles 

from the precautionary saving literature studies such as De Nardi et al. (2010) target household 

wealth patterns using structural estimation, especially the slow wealth decumulation of the 

elderly. French (2005) and Abe et al. (2007) also include work hours as target variable in the 

structural estimation of their life-cycle model. Yet such studies set aside the portfolio selection 

decision by permitting households to invest in only one asset. Research addressing the portfolio 

choice problem includes Inkmann et al. (2011), Fagereng (2017), Dahlquist et al. (2018), Pagel 

(2018), Bonaparte et al. (2021), and Catherine (2022). These studies include stock market 

participation and/or the share of financial assets invested in equities (conditional on 

participation) in their structural estimation. While some also target wealth accumulation 

profiles, they do not include non-financial decision variables such as work hours. Consequently, 

our life-cycle model combines these two approaches to better match simultaneously the age-

profiles on stock market participation rates, conditional stock share, financial-wealth-to income 

ratio, and work hour profiles. In particular, and in contrast to most studies, we include relatively 

high age ranges as targets in the structural estimation, and thus we address household behavior 

during both their work and retirement phases. All this is done with a minimum of additional 

state variables.  

A second strand of literature to which our work is related studies the implications of loss 

aversion on optimal portfolio allocations. For example, Blake et al. (2013) uses such a model 

 
2 This literature is heterogeneous as some studies only match one moment across all age groups while other studies 

also include other non-preference parameters such as stock market participation costs in the structural estimation. 
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to determine the optimal investment strategy for participants in a defined contribution pension 

plan. Yet that study focuses on only the retiree’s final wealth at retirement, and not consumption 

over the entire life cycle.3 Other studies develop life-cycle models with a narrow framing 

preference specification as suggested by Barberis and Huang (2009), assuming that households 

derive utility not only from consumption but also from periodic gains and losses of their risky 

asset holdings. Recent work by Calvet et al. (2022) uses such an approach to explain the high 

demand for investment products with guaranteed returns in the Swedish market. An earlier 

paper by Chai and Maurer (2012) attempts to derive the reference point from investors' 

historical return experiences in the context of a life-cycle model. We contribute to this literature 

by showing theoretically that the two-parameter approach of Barberis and Huang (2009) can be 

reduced to a single preference parameter. In addition, such papers set the preference parameters 

used in their models along pre-specified values from the literature. By contrast, we determine 

the preference parameters endogenously as a result of a structural estimation procedure. 

Last, our work also extends the life-cycle literature addressing ex-ante as well as ex-post 

heterogeneity of households in the overall population (Gomes and Michaelides 2005; Calvet et 

al. 2021; Gomes and Smirnova 2021). In particular, we show that a structural life-cycle model 

with heterogeneous preferences for three important subgroups of the total population, namely 

stock owners, bond owners, and a mixed group, can explain the data remarkably well. 

The remainder of the paper is as follows. Section 2 presents the life-cycle model. Section 

3 explains the calibration and structural estimation. Section 4 displays the analysis for the model 

for stockholders. Section 5 outlines the analysis for the model for the entire population. Section 

6 presents the analysis for the heterogeneous agent model. Section 7 concludes. 

2  Life-Cycle Model 

Our overall objective is to match a rich dataset of key financial and non-financial 

household decisions by age, to the predictions of a structurally estimated life-cycle model which 

allows us to estimate household preferences. The model itself is an attempt to balance 

parsimony along with important financial and non-financial variables using a state-of-the-art 

life-cycle model. The model is deliberately chosen to be parsimonious with respect to the 

 
3 This study is also related to studies that develop dynamic portfolio choice models with narrow framing and loss 

aversion that do not include other typical life-cycle model components such as labor income. De Giorgi and Legg 

(2012) extend the framework of Barberis and Huang (2009) by additionally including probability weighting into 

the narrow-framing component, while Guo and He (2021) extend the framework by scaling gains and losses 

proportionally to the certainty equivalent of the total utility. 
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number of state variables, as we solve it numerous times during the structural estimation and 

thus the solution to the model must be computationally tractable.  

2.1 Preference Specification 

We work in discrete time and assume that the representative U.S. household faces an 

uncertain lifetime and makes annual decisions from age 25 (𝑡0 = 1) to age 100 (𝑇 = 76) on 

consumption, leisure, and portfolio allocation to stocks and bonds. The household has rational 

expectations and receives utility from consumption, leisure, bequest, and an additional stock 

market loss framing component. The overall preference structure is defined as follows: 

𝑉𝑡 = {(1 − 𝛽)(𝐶𝑡𝐿𝑡
𝛼)
1−

1
 𝜓 + 𝛽 [(𝔼𝑡 [𝑝𝑡𝑉𝑡+1

1−𝛾
+ (1 − 𝑝𝑡)𝑏 (

𝑊𝑡+1

𝑏
)
1−𝛾

])

1
1−𝛾

 

                 + 𝑝𝑡Λ𝔼𝑡[min (𝐺𝑡+1, 0)]]

1−
1
 𝜓

}
 

 
1−

1
 𝜓

 , 

(1) 

where the performance from investments in the stock market 𝑆𝑡 generating uncertain returns 

𝑅𝑡+1 relative to a benchmark return 𝑅𝑏 is given by:  

𝐺𝑡+1 = 𝑆𝑡(𝑅𝑡+1 − 𝑅𝑏). (2) 

Accordingly, the household has recursive preferences of the Epstein-Zin (1989) type 

defined over a composite good comprised of non-durable consumption 𝐶𝑡 and leisure 𝐿𝑡 

(normalized as a fraction of total available time), which themselves are governed by a modified 

Cobb-Douglas function with leisure parameter 𝛼 > 0. Furthermore, 0 < 𝛽 < 1 denotes the 

subjective discount factor, 𝜓 > 0 represents the elasticity of intertemporal substitution (EIS), 

and 𝛾 > 1 denotes the coefficient of relative risk aversion. The probability of surviving to 

period 𝑡 + 1 conditional on being alive in period 𝑡 is denoted by 𝑝𝑡. The household further 

receives future utility by financial wealth 𝑊𝑡 transferred to the next generation in case of death; 

the parameter 𝑏 ≥ 0 determines the strength of the bequest motive. The last preference 

component is a modification of the narrow-framing component with embedded loss aversion 

proposed by Barberis and Huang (2009), where we concentrate on the fall in utility resulting 
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from stock losses.4 Specifically, the household experiences additional disutility from the 

expected shortfall on stock investments below a predefined benchmark 𝑅𝑏 and the parameter 

Λ ≥ 0 measures the strength of this preference component.  

Five features make this preference specification attractive in the life-cycle context. First, 

it is dynamically consistent, which implies that dynamic programming techniques can be used 

for solving models with such preferences.5 The stock market loss framing component does not 

alter this property as the household knows at each time step how it will frame any future losses. 

Second, the whole preference specification is homothetic, which is a desirable property for 

preferences as it allows for normalization by state variables to reduce the computational burden 

of solving the model. Third, none of the elements comes at the cost of an additional state 

variable, making the life-cycle model parsimonious and allowing the inclusion of other state 

variables from a numerical point of view. Fourth, it is straightforward to eliminate certain parts 

of the preference specification, including the loss-framing part (by setting Λ = 0), such that it 

collapses to a classic preference specification often used in the life-cycle context and thus 

enables a distinct analysis of effects. And fifth, in contrast to Barberis and Huang (2009), our 

approach requires only one parameter Λ to capture loss preferences, which substantially 

facilitates the dimensionality of the matching procedure in the structural estimation. We 

illustrate in Appendix A how our loss-framing parameter Λ is related to the Barberis and Huang 

(2009) parameters for narrow framing and loss aversion and show that these can be translated 

into one another.  

2.2 Capital Market and Asset Dynamics 

The household can invest in two financial assets, a risk-free bond and a risky asset 

represented by an investable stock index. The dollar amount invested in bonds and stocks at 

time 𝑡 is denoted by 𝐵𝑡 and 𝑆𝑡 respectively. To avoid modeling potential household insolvency, 

we rule out household borrowing and stock short-selling. The bond yields a constant real annual 

gross return 𝑅𝑓, also the benchmark to determine losses from equity investments entering the 

utility function in equation (2). Investments in risky stocks have an uncertain gross return 𝑅𝑡 

that follows a stochastic process: 

 
4 It should be noted that the specification of the loss framing part in (1) is consistent with Bawa and Lindenberg’s 

(1977) first order Lower Partial Moment 𝐿𝑃𝑀1  =  𝐸[max (𝑆𝑡𝑅𝑏 –  𝑆𝑡𝑅𝑡+1, 0)]  =  −𝐸[min(𝑆𝑡𝑅𝑡+1 − 𝑆𝑡𝑅𝑏 , 0)] 
and Fishburn’s (1977) mean-risk analysis, in which risk is measured by the expected shortfall below a target return. 
5 This is the case as the Epstein-Zin preferences are themselves a case of Kreps-Porteus (1978) preferences, which 

are dynamically consistent as illustrated by Kreps and Porteus (1979). 
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log(𝑅𝑡
𝑔𝑟𝑜𝑠𝑠

) = 𝜇 + 𝜂𝑡 , (3) 

where 𝜇 is the drift and 𝜂𝑡  ~ 𝑁(0, 𝜎𝜂
2) is an innovation component, assumed to be independent 

and identically normally distributed. In sensitivity analysis, we allow stock returns to follow a 

Markovian regime-switching process with different drift and volatility parameters to model a 

disaster event. 

The household faces three types of costs for capital market investments: first, yearly returns 

on stocks and bonds are subject to a linear capital gains tax 𝑡𝑐.
6 Second, a yearly management 

fee 𝜅𝑆𝑡 proportional to the dollar amount invested in stocks, constitutes a fixed reduction of the 

expected annual (pre-tax) stock return. Such a fee is usually charged by asset managers and 

reflects their administrative and distribution costs. Therefore, the return on equities net of 

management fee is given by 𝑅𝑡 = 𝑅𝑡
𝑔𝑟𝑜𝑠𝑠

(1 − 𝜅). These elements result in the following 

dynamics for financial wealth: 

𝑊𝑡+1 = 𝑆𝑡𝑅𝑡+1 + 𝐵𝑡𝑅𝑓 − 𝑡𝑐max(𝑆𝑡𝑅𝑡+1 + 𝐵𝑡𝑅𝑓 − 𝑆𝑡 − 𝐵𝑡, 0). (4) 

Third, the household faces costs for stock market participation. As pointed out by Vissing-

Jørgensen (2002), there are several sources of such costs. Some are pecuniary in nature, such 

as fees for a broker account or paying for financial advice. There are also opportunity costs, 

such as the requirement to devote time and mental resources for gathering and processing 

information about market conditions and evaluating risk-return characteristics (Ahn et al. 2011; 

Kim et al. 2016). While there may be an initial one-time entry cost of stock participation 

(Gomes and Michaelides 2005), it will also still be necessary for investors to expend resources 

each period to evaluate and to respond to changing financial market conditions. Here we follow 

Fagereng et al. (2017) and assume that investments in the stock market incur fixed per-period 

participation costs 𝜙𝑡; we allow such costs to depend on age, and they may also be 

heterogeneous across different types of investors. 

2.3 Labor Income  

During the working life until period 𝐾, the household can allocate the fraction 𝑁𝑡−1 of its 

available yearly time budget Υ (in hours) to work paying an uncertain hourly wage rate. Total 

gross labor income follows the following stochastic process: 

 
6 For simplicity, we do not distinguish between the different taxation of dividends and capital gains on stocks nor 

do we allow to carry forward losses into subsequent periods. Instead, we assume that all investment income (if 

positive) is taxed with the same tax rate at the source.  
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𝑌𝑡
𝑔𝑟𝑜𝑠𝑠

= 𝑁𝑡−1Υexp(𝑤(𝑡, 𝑁𝑡−1))𝑃𝑡𝜑𝑡        ∀ 𝑡 ≤ 𝐾, (5) 

where 𝑤(𝑡, 𝑁𝑡−1) denotes the logarithm of the wage rate in time period 𝑡, which is a 

deterministic function of age as well as the work time, and 𝜑𝑡 is an idiosyncratic temporary 

wage shock. 𝑃𝑡 is the level of permanent income which develops according to the following 

dynamics:    

𝑃𝑡 = 𝑃𝑡−1𝜗𝑡, (6) 

where the innovation 𝜗𝑡 to the permanent component is further decomposed into an aggregate 

component 𝜉𝑡 and an idiosyncratic component 𝜔𝑡: 

𝜗𝑡 = 𝜉𝑡𝜔𝑡. (7) 

All three wage shocks are serially independent and identically log-normally distributed, 

i.e. log(𝜑𝑡) ~ 𝑁(−0.5𝜎𝜑
2 , 𝜎𝜑

2), log(𝜉𝑡) ~ 𝑁(−0.5𝜎𝜉
2, 𝜎𝜉

2), and log(𝜔𝑡) ~ 𝑁(−0.5𝜎𝜔
2 , 𝜎𝜔

2), and 

they are assumed to be uncorrelated with each other. The aggregate shock to permanent income 

𝜉𝑡 may be correlated with the shock to the stock return 𝜂𝑡. 

Similar to Gomes et al. (2008) and Hubener et al. (2016), we assume that net labor income, 

which the household can use for non-durable consumption and saving, is equal to gross labor 

income after the deduction of proportional age-dependent housing costs ℎ(𝑡) and a proportional 

labor income tax rate 𝑡𝑙. The resulting net labor income is then defined as follows: 

𝑌𝑡 = (1 − ℎ(𝑡))(1 − 𝑡𝑙)𝑌𝑡
𝑔𝑟𝑜𝑠𝑠

. (8) 

This modeling of housing costs and labor income taxes is common in the life-cycle literature 

(see for example Gomes et al. 2008), especially because it does not require additional state 

variables.7  

2.4 Retirement Income  

After retirement at the exogenous time 𝐾 + 1, the household receives lifelong Social 

Security benefits based on a fraction 𝜁 (the replacement rate) of average lifetime earnings 𝑌̅: 

𝑌𝑡
𝑔𝑟𝑜𝑠𝑠

= 𝜁𝑌̅        ∀ 𝑡 > 𝐾. (9) 

 
7 See Cocco (2005) and Yao and Zhang (2005) for life-cycle models that include housing as an additional asset 

and Zhou (2012) and Horneff et al. (2019) for life-cycle models that include the federal labor income tax according 

to the official U.S. rules. 
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Following Chai et al. (2011), the average lifetime earnings level is approximated by the product 

of weighted deterministic wages during the working life, the average yearly work effort 𝑁̅Υ, 

and the permanent labor income 𝑃𝐾 at the retirement age:8 

𝑌̅ =
∑ 𝑁̅Υexp(𝑤(𝑡, 𝑁̅))𝐾
𝑡=1

𝐾
𝑃𝐾 . (10) 

 To arrive at net retirement income available for consumption or saving, we further adjust 

gross retirement income by deducting age-dependent proportional housing costs ℎ(𝑡) and a 

proportional retirement income tax 𝑡𝑟, which is different than during the working life. In 

addition, we shrink gross retirement income by the proportional factor 1 − 𝜆, where 𝜆 

represents the average portion of retirement income the household must spend on medical costs, 

and 𝜀𝑡 represents a transitory retirement income shock, where log(𝜀𝑡) ~ 𝑁(−0.5𝜎𝜀 
2, 𝜎𝜀

2). The 

latter captures the risk of out-of-pocket medical expenses during retirement similar to Pang and 

Warshawsky (2010). Consequently, net retirement income is given as follows: 

𝑌𝑡 = (1 − ℎ(𝑡))(1 − 𝑡𝑟)(1 − 𝜆)𝑌𝑡
𝑔𝑟𝑜𝑠𝑠

𝜀𝑡. (11) 

2.5 Optimization Problem 

The household maximizes its value function, equivalent to the preference specification in 

equation (1), for each time step 𝑡. We exploit the fact that the value function is homothetic and 

normalize all pecuniary variables by permanent income 𝑃𝑡, which enables us to drop permanent 

income as a state variable. Lowercase variables represent the normalized counterparts of 

uppercase non-normalized variables. The household chooses the control variables consumption 

𝑐𝑡, investment in stocks 𝑠𝑡, investment in bonds 𝑏𝑡, and work hours (as a fraction of available 

time) 𝑁𝑡. Normalized cash on hand 𝑥𝑡 at a certain point in time represents the only state 

variable,9 where cash on hand is defined as the sum of financial wealth and net labor or 

retirement income: 

𝑥𝑡+1 = 𝑤𝑡+1 + 𝑦𝑡+1. (12) 

We solve the optimization problem for two cases. In the case without stock market 

participation costs, the optimization problem reads as follows:  

 
8 The modeling of the average lifetime earnings is a reasonable approximation of the U.S. Social Security rules, 

which use the Average Indexed Monthly Earnings (AIME) to calculate a household’s retirement benefit, where 

the AIME is defined as the mean of the household’s 35 highest years of indexed earnings up to age 60. Yet tracking 

yearly earnings requires a least one additional state variable, which increases the computational effort substantially. 
9 We also consider one model variant in which the stock process follows a two-dimensional Markov regime-

switching process. For that model the current financial regime constitutes a discrete state variable. 
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max
𝑐𝑡,𝑠𝑡,𝑏𝑡,𝑁𝑡

𝑣𝑡 (𝑥𝑡). (13) 

The constraints to which the household must adhere include the budget constraint: 

𝑥𝑡 = 𝑐𝑡 + 𝑠𝑡 + 𝑏𝑡, (14) 

the non-negativity constraints for consumption as well as stock and bond holdings: 

𝑐𝑡, 𝑠𝑡, 𝑏𝑡 ≥ 0, (15) 

and the work budget constraint:   

𝑁̃ ≥ 𝑁𝑡 ≥ 𝑁,                  (16) 

where 𝑁̃ and 𝑁 are the maximum and minimum of available time (normalized as a fraction of 

total available time) the household can allocate to work, respectively. During retirement, the 

household must not work, which is why constraint (16) is binding at the lower bound: 

 𝑁𝑡 = 𝑁          ∀ 𝑡 > 𝐾.                  (17) 

The work decision has direct implications for household leisure which itself enters the 

preference specification: 

 𝐿𝑡 = 1 − 𝑁𝑡 .                  (18) 

In the case with stock market participation costs, we extend the previous model and assume 

that an age-dependent fixed amount 𝜙𝑡 must be paid to participate in the stock market, 

following Fagereng et al. (2017). If the household has enough cash on hand to cover this 

participation cost as well as to keep consumption and stocks investment positive, it optimizes 

two problems, one with and one without stock market participation. The optimization problem 

if the household decides to participate in the stock market is defined as follows:  

max
𝑐𝑡,𝑠𝑡,𝑏𝑡,𝑁𝑡

𝑣𝑡
 (𝑥𝑡

𝑠) 
(19) 

with the budget constraint: 

𝑥𝑡
𝑠 = 𝑐𝑡 + 𝑠𝑡 + 𝜙𝑡 + 𝑏𝑡. (20) 

The optimization problem if the household decides to not participate in the stock market is 

defined as follows:  

max
𝑐𝑡,𝑏𝑡,𝑁𝑡

𝑣𝑡
 (𝑥𝑡

𝑏) (21) 

with the budget constraint: 

𝑥𝑡
𝑏 = 𝑐𝑡 + 𝑏𝑡. (22) 

The optimization problem is then as follows:  
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𝑣𝑡
 = max (𝑣𝑡

 (𝑥𝑡
𝑠), 𝑣𝑡

 (𝑥𝑡
𝑏)). (23) 

The household finally decides whether to participate in the stock market by comparing the value 

function of participation and non-participation, and selects the option with the higher value: 

𝕝{𝑆𝑡>0} = {
1  if 𝑣𝑡

 (𝑥𝑡
𝑠) ≥ 𝑣𝑡

 (𝑥𝑡
𝑏)

0  if 𝑣𝑡
 (𝑥𝑡

𝑠) < 𝑣𝑡
 (𝑥𝑡

𝑏)
. (24) 

If the participation costs 𝜙𝑡 are greater than the cash on hand 𝑥𝑡, an investment in stocks is not 

possible. In this case the optimization problem is equivalent to equations (21) and (22). 

2.6  Numerical Solution Methods  

 We solve the optimization problem using discrete-time dynamic programming, solved 

recursively through time via backward induction. Given that the preference specification is 

homothetic and the permanent income component 𝑃𝑡 follows a random walk, we normalize 

each pecuniary variable by permanent income 𝑃𝑡 and thus can remove permanent income as a 

state variable in the optimization problem. We discretize the continuous state variable 

normalized cash on hand 𝑥𝑡 on an equidistant 35-point log-grid with a lower bound of 0.6931 

and an upper bound of 7.6014, where the scale of the grid points is in thousands of U.S. dollars. 

The expectation of the multivariate log-normally distributed random variables is computed 

using Gauss-Hermite quadrature with nine quadrature nodes per dimension. To evaluate the 

value function at points for normalized cash on hand that do not lie on the grid, we use a cubic 

spline inter- and extrapolation. We further use an interior-point algorithm to solve the 

constrained non-linear optimization problem. After solving the optimization problem and 

obtaining the corresponding policy functions, we simulate the model using Monte Carlo 

simulation with 100,000 paths, where each path represents one life-cycle scenario of the 

household. For the simulation, we assume that the household starts with some work hours and 

financial wealth. To introduce some ex-ante heterogeneity into our economy, we equip the 

household with differing initial financial wealth in each simulation path. The initial financial 

wealth is defined as a multiple of the household’s first year gross income, drawn from a 

generalized Pareto distribution. First-year gross income is based on 40 hours of work per week 

for each household. The ex-post heterogeneity is then given by the realizations of all shocks 

during the simulation. 
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3 Estimation and Calibration  

For calibrating and estimating the parameters of our model, we adopt a two-stage approach 

similar to that in Gourinchas and Parker (2002), De Nardi et al. (2010), French and Jones 

(2011), and Laibson et al. (2015). Our approach in the first stage is to estimate as many model 

parameters as possible and thus minimize discretionary decisions, and our estimation methods 

follow standard procedures in the literature. Therefore, in the first stage, we estimate and 

calibrate parameters related to labor and retirement income, housing costs, capital market 

returns, and mortality rates using U.S. data, given that these can be identified without explicitly 

solving the model. In the second stage, we structurally estimate preference parameters and stock 

market participation costs given the first-stage parameters using the simulated method of 

moments (SMM) with respect to several empirical target variables. 

3.1 First-Stage Parameters 

All calibrations and estimations rely on up-to-date U.S. data. The longevity of our 

representative households is governed by survival probabilities 𝑝𝑡 obtained from the Human 

Mortality Database (HMD) period life table 2017. Table 1 gives an overview of all first-stage 

model parameters, while more details on data, estimation methods, and results are displayed in 

Appendix B. 

--- Table 1 here --- 

The risk-free rate and stock return parameters are estimated using the 3-Month T-Bill and 

the S&P 500 total return stock index for the sample period February 1970 to July 2020, 

respectively, deflated by the monthly CPI for all urban customers using as a base month July 

2020. This generates a yearly riskless rate of 𝑅𝑓 =  1.0077, which also serves as the benchmark 

to determine relevant losses of stock investments entering the utility function. The expected 

gross stock return is 𝔼[𝑅𝑡
𝑔𝑟𝑜𝑠𝑠

] = 1.0789 and the standard deviation is Std(𝑅𝑡
𝑔𝑟𝑜𝑠𝑠

) = 0.1688. 

Consequently, our estimate for the equity risk premium of 𝔼[𝑅𝑡
𝑔𝑟𝑜𝑠𝑠

− 𝑅𝑓] = 0.0712 is 

substantially higher compared to that used in other life-cycle studies, which typically assume a 

risk premium of around 0.04 (Cocco et al. 2005; Gomes and Michaelides 2005); using a lower 

premium of course makes stock market investment less attractive. 

Our estimation of the gross wage process parameters uses data from the 1975 to 2017 

waves of the Panel Study of Income Dynamics (PSID). Following Carroll and Samwick (1997) 

and Cocco et al. (2005), we evaluate the deterministic and the stochastic wage components; the 



14 

 

contemporaneous correlation of the logarithm of the aggregate component of the stochastic 

permanent wage with the innovation of the logarithm of the stock return 𝜂𝑡 follows Campbell 

et al. (2001) and Cocco et al. (2005). Resulting estimates are in line with values in the literature. 

Total gross labor income is then defined as the exponential of the log wage rate process times 

yearly waking hours Υ = 5200, which is itself the result of the product of 52 weeks and an 

assumed 100 waking hours per week the household can allocate at the maximum to leisure. The 

fraction 𝑁𝑡 determines the percent of waking hours the household can allocate to work, 

with 𝑁𝑡 ∈ [𝑁 , 𝑁̃]. We set 𝑁 = 0 and 𝑁̃ = 0.6, which results in a range of 0 to 60 hours work 

per week. We assume that age 67 is the sole retirement age, which corresponds to time 

period 𝐾 + 1 = 43. Estimation of the retirement parameters, namely the benefit replacement 

ratio, the out-of-pocket medical expenditures, and the stochastic component of net retirement 

income rely on the PSID and procedures similar to Love (2010). Age-dependent housing costs 

are estimated with PSID data following Gomes and Michaelides (2005) and Love (2010).  

The proportional management fee for stock investments is 𝜅 = 0.0018, which is equal to 

the difference of the average of pre- and post-expense return of exchange traded funds reported 

by Elton et al. (2019). The age-dependent stock market participation costs 𝜙𝑡 = 𝐹𝑡 · 𝜒 per-

period is the product of the fixed participation costs and an age-dependent scaling factor 𝐹𝑡. 

The scaling factor is determined using the American Time Use Survey (ATUS) microdata from 

the Bureau of Labor Statistics, such that at age 66 the ratio is equal to one. The function for the 

scaling factor is equal to 𝐹𝑡 = 0.0152(𝑡 + 24). The uniform proportional capital gains tax is 

set to 𝑡𝑐 = 0.15, the proportional labor income tax is set to 𝑡𝑙 = 0.3, and the proportional 

retirement income tax is set to 𝑡𝑟 = 0.1.  

Household initial financial wealth is defined as a multiple of the household’s first-year 

gross income, drawn from a generalized Pareto distribution that fits the financial wealth-to-

income ratio of households aged 18 to 25 from the Survey of Consumer Finances for the 

relevant (sub-)groups of the population.10 The first-year gross income is based on 40 weekly 

work hours for each household. 

 
10 The financial wealth-to-income ratio is defined as the ratio of total financial wealth to annual labor or retirement 

income. The exact definitions are explained in detail in the subsequent section, where the empirical targets for the 

structural estimation are discussed. 
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3.2 Structural Estimation 

3.2.1 Empirical Targets 

Despite its sparsity, our life-cycle model generates several of the target variables of interest 

for our structural estimation. We choose to investigate the household’s portfolio allocation, 

savings, and labor supply decisions, which are the key household choices. These variables are 

approximated by the decision to hold any stocks, the fraction of financial wealth invested in 

stocks, the ratio of financial wealth to labor and retirement income, and the fraction of available 

time devoted to work, respectively. Furthermore, in terms of wealth accumulation, we 

distinguish between stockholder households, non-stockholder households, and blend of both 

types in the entire population. 

We use two datasets for estimating the empirical targets. The data for all portfolio and 

wealth-related targets are obtained from the Survey of Consumer Finances (SCF), which is a 

triennial survey on the financial assets of U.S. households. Data for work hours are obtained 

from the Panel Study of Income Dynamics (PSID), which we use to estimate the labor and 

retirement income-related parameters in the first stage. Details on the exact data and definitions 

of the empirical targets are displayed in Appendix C. 

Further, each variable is grouped into seven age buckets. For all variables, the starting age 

is 25; the ending age is 80 for the SCF-based variables, and age 66 for the PSID-based variable. 

In order to give each targeted variable the same weight, we use the same number of age groups 

for each variable.11 This is supported by the greater data availability compared to single-age 

groupings, and further it has the advantage of providing some data smoothing. Moreover, this 

approach reduces estimate bias (Newey and Windmeijer 2009).  

Definitions of the targeted empirical variables are then as follows. Stock market 

participation is an indicator variable that equals one if the total dollar stock allocation is above 

zero, and zero otherwise. The stock share conditional on stock market participation is the 

fraction of financial wealth allocated to stocks, given a non-zero allocation to stocks. The 

financial wealth-to-income ratio is the ratio of total financial wealth to annual labor or 

retirement income. The financial wealth-to-income ratio for stockholders is the ratio given a 

non-zero allocation to stocks, while the financial wealth-to-income ratio for non-stockholders 

 
11 The decision to use seven age groups for each variable is grounded in the modeling decision of the life-cycle 

model. We have 42 integer ages for the working phase (age 25 to 66), this results in seven groups over each of six 

consecutive years of life. This integer factorization must also be applied to the wealth-related SCF-variables with 

starting age 25 and ending age 80, which results in seven age buckets over each of eight consecutive years of life.  
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is the ratio given a zero allocation to stocks. We further trim the data by deleting observations 

with negative financial wealth-to-income ratios and those above 100 for more robust estimates. 

The share of weekly work hours is defined as the average weekly work hours reported in the 

PSID divided by our assumed 100 weekly waking hours.12  

To estimate the desired life-cycle effects, we must disentangle age, time, and cohort effects 

which together are perfectly collinear. To this end, we rely on the method developed by Deaton 

and Paxson (1994), by regressing the empirical target 𝑦𝑗,𝑑𝑎𝑡𝑎 on a full set of age group dummies 

as well as cohort dummies and wave/time dummies. For all variables relying on SCF data, we 

weight both the independent and the dependent variables by a scaled wave weight that ensures 

that the sum of all weights is equal across the waves. The regression for each variable 

observation of household 𝑖 is then as follows: 

𝑦𝑖,𝑎,𝑐,𝑡
𝑗,𝑑𝑎𝑡𝑎

= 𝛽𝑎𝐷𝑎 + 𝛽𝑐𝐷𝑐 + 𝛽𝑡𝐷𝑡 + 𝜖𝑖,𝑎,𝑐,𝑡, (25) 

subject to: 

∑𝛽𝑡
𝑡

(𝑡 − 𝑡)̅ = 0, 
(26) 

where 𝐷𝑎, 𝐷𝑐, and 𝐷𝑡 are dummies for age, cohort, and time (i.e. waves), respectively. The 

constraint that the sum of the wave coefficients times the demeaned wave year is equal to zero 

ensures that cohort effects capture any time trend. 

Estimation results are displayed in Table 2. In general, all regression coefficients are highly 

significant, given the large sample sizes. The stock market participation rate is hump-shaped 

with values between 0.52 and 0.65. The conditional stock share shows a mildly hump-shaped 

pattern over the life cycle, lying between 0.38 and 0.46. The financial wealth-to-income ratio 

for stockholders is strictly increasing and convex in age, while the financial wealth-to-income 

ratio for non-stockholders is also increasing in age but flattens out for the oldest age groups. 

The financial wealth-to-income ratio for the entire population is also increasing in age, fairly 

linearly. Accordingly, there is a large difference in wealth accumulation between stockholders, 

households that hold only bonds, and the entire population, illustrating the usefulness of 

distinguishing between these investor groups. The work hours share is stable over the life-cycle 

with an average share of about 0.42, which drops slightly for the oldest age group. 

 
12 It would also be possible to condition the work hours share on stock market participation, but the PSID includes 

information on combined stock ownership in retirement and non-retirement accounts in only three waves (1984, 

1989, and 1994). Moreover, in more recent waves, stock ownership is reported only for non-retirement accounts, 

which heavily underestimates the population stock market participation pattern. 
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--- Table 2 here ---  

3.2.2 Methodology 

One model run of the SMM estimation proceeds as follows. First, we specify a set of 

second-stage parameters. Next, for this parameter combination, the life-cycle model is 

optimized and then simulated given the first-stage parameterization. Third, the moments of the 

target variables are computed using the simulation results for that parameter combination. 

Fourth, the simulation-implied moments are compared to those of the empirical targets using a 

distance function, which determines the goodness-of-fit of the respective parameter 

combination. In the following, we give a brief overview of the methods (further details on the 

exact methods for each component of the structural estimation are displayed in Appendix D). 

The vector 𝜽 comprises all preference parameters contained in equation (1) as well as stock 

market participation costs and is defined as follows:  

𝜽 ≡ [𝛼 𝛽 𝛾 𝜓 𝑏 Λ χ]. (27) 

The loss benchmark parameter 𝑅𝑏 is set equal to 𝑅𝑓, as the other economically reasonable value 

of one would be the same as upscaling the loss-framing parameter. The SMM estimator is then 

the resulting vector of parameters that minimizes this distance function, which is defined as the 

squared percentage deviation of the difference in the vector of simulated model moments from 

the data moments: 

𝜽𝑆𝑀𝑀 = argmin
𝜽       

 [
𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽) −𝒎(𝒚𝑑𝑎𝑡𝑎)

𝒎(𝒚𝑑𝑎𝑡𝑎)
]

⊤

𝑾 [
𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽) −𝒎(𝒚𝑑𝑎𝑡𝑎)

𝒎(𝒚𝑑𝑎𝑡𝑎)
] , (28) 

where 𝒎(∙) denotes the moment vector of the targeted variables. We use the percentage 

deviation of the moments as a distance measurement, given the different scale of the target 

variables. Furthermore, the weighting matrix 𝑾 is equal to the identity matrix 𝑰 as we combine 

moments from two different data sets, namely the SCF and the PSID. Consequently, the typical 

modeling approaches cannot be applied, such as using inverse of the variance-covariance matrix 

of the actual data moments (Gourieroux et al. 1993) or bootstrapping the actual data (Hall and 

Horowitz 1996). Standard errors are calculated in line with Fagereng et al. (2017) by 

bootstrapping the simulated data. 
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To determine the best-fitting parameter combination, first we perform an exhaustive 

discrete parameter grid search.13 The upper and lower values for the constraint set of the 

multidimensional grid are extrapolated values of previously-used values in the literature. This 

approach ensures that our parameter grid construction is consistent with respect to each 

parameter and some extent literature.14 Given the high dimensionality of the parameter space 

and consequently the total number of possible parameter combinations, we extract our 

parameter values using quasi-random numbers from a Sobol sequence, which has the advantage 

of constructing a relatively even distribution of the parameter combinations in each dimension. 

Furthermore, this approach has the convenience that one can extract a variety of empirical target 

combinations from one combination run and utilize large-scale parallelization techniques over 

the parameter combinations. In the second step, we use the three best-fitting parameter 

combinations for each empirical target combination from the first step, to run for each, a local 

optimization using a direct search algorithm where the respective parameter combination serves 

as starting point. The best-fitting parameter combination of all runs in the second step is then 

considered our global optimum and hence the structural estimate for the respective target 

moment combination.  

Our assessment of the goodness-of-fit of the model is performed via two criteria, namely 

the numerical value of the criterion function value at the best-fitting parameter combination: 

𝑓(𝜽𝑆𝑀𝑀) = [
𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀) −𝒎(𝒚

𝑑𝑎𝑡𝑎)

𝒎(𝒚𝑑𝑎𝑡𝑎)
]

⊤

𝑰 [
𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀) −𝒎(𝒚

𝑑𝑎𝑡𝑎)

𝒎(𝒚𝑑𝑎𝑡𝑎)
] (29) 

and the mean relative error (MRE), which is defined as the mean of the absolute percentage 

deviation of the targeted model moments and the data moments, i.e.:  

𝑀𝑅𝐸(𝜽𝑆𝑀𝑀) =
1

𝑛
∑|

𝑚𝑖(𝑦
𝑗,𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀) − 𝑚𝑖(𝑦

𝑗,𝑑𝑎𝑡𝑎)

𝑚𝑖(𝑦𝑗,𝑑𝑎𝑡𝑎)
|

𝑛

𝑖

, (30) 

where 𝑛 denotes the total number of targeted moments, and 𝑚𝑖(𝑦
𝑗) denotes the 𝑖-th moment 

of target variable 𝑗. The latter metric enables us to also compare the fit between models with a 

different number of targeted moments.  

 
13 A discrete parameter grid search for matching data moments in life-cycle models is also used, for example, by 

Love (2010) and Hugonnier et al. (2013). 
14 We mainly include literature-based values that are not structurally estimated. We also exclude extreme values 

that do not make sense in our context, and we do not use natural boundaries as starting values in order to allow the 

extrapolation to reach values in both directions without being immediately bounded. The literature-based 

parameter values, their sources, and the final extrapolated values can be found in the Appendix D. 
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4 Analysis for Stock Market Participants  

To illustrate the proposed loss-framing preferences, we initially focus on the important 

subset of households that does participate in the stock market. In particular, we do not target 

stock market participation rates, but we do include age profiles of three target variables, namely 

the share of financial wealth invested in equities, the financial wealth-to-income ratio, and work 

hours. This allows us to include only preference parameters in our structural estimation. 

Furthermore, this enables us to isolate the impact of our loss-framing concept without 

interference from other model components and variables known to have an effect on stock 

market participation (such as participation costs). Nevertheless, below we show that the loss-

framing preference specification alone does not discourage households to completely avoid the 

stock market. In Sections 5 and 6, this simplification is abandoned, so we can directly address 

the limited stock market participation of U.S. households. 

4.1 Estimation Results 

This section presents our structural estimation results for three different target moment 

combinations (see Panel A of Table 3). In the first setting, depicted in column 1, only the shares 

of financial wealth invested in the stock market for the seven age groups are used as targets. 

Subsequently, the work hours (column 2) are also included. In the third setting (column 3), the 

empirical moments of all three variables, namely the conditional stock share, the work hours 

share, and the financial wealth-to-income ratio across the seven age groups (i.e. 21 moments 

overall) are considered as target variables for the structural estimation procedure. The goal of 

these successive evaluations is to highlight the importance of estimating simultaneously all 

three target variables, rather than limiting the structural estimation to only one or two targets. 

Optimal preference parameters with the best fit of the moments generated by the model relative 

to the empirical moments are listed in Panel B of Table 3, while the model-implied moments 

are contrasted to empirical moments in Figure 1.  

The first setting which targets only the conditional stock share data shows a nearly perfect 

fit of the empirical moments. The mean relative error of the seven moments generated from the 

model relative to their empirical counterparts is only 1.32%. Furthermore, Figure 1 shows 

almost no visible difference between the empirical moments (solid line) and the model values 

(dashed line). Using the standard errors documented in Table 2, all moments generated by the 
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model are well within the 95% confidence interval of their empirical counterparts.15 The loss-

framing parameter Λ is significantly different from zero with an estimated value of 0.0201.16 

Therefore, it can be concluded that the consideration of an aversion to losses resulting from 

equity investments does play a key role in explaining the data so well.  

Nevertheless, a review of the optimal values generated for the other preference parameters 

reported in column (1) of Table 3 Panel B illustrates a weakness of this approach. On the 

positive side, the preference parameters for leisure 𝛼, relative risk aversion 𝛾, and the strength 

of the bequest motive 𝑏 are reasonable and highly statistically significant, comparable to those 

in other life-cycle studies.17 Yet the estimated time discount factor 𝛽 and the EIS 𝜓, respectively 

0.8417 and 0.2677, are far too low, and far from their empirical counterparts (see Figure 3 

Panels a.2 and a.3). Compared to the data, these households work fewer hours and accumulate 

much less financial wealth, given their low discount factor. 

--- Table 3 here ---  

Our second estimation combination in column (2) of Table 3 Panel B targets the 

conditional stock and work hours share, while the financial wealth-to-income ratio continues to 

be excluded from the structural estimation procedure. Resulting parameter estimates are not too 

different from those in the previous case, as the discount factor, the EIS, and the bequest 

parameter increase in value, while the leisure parameter and risk aversion decrease in value. 

Most notably, the estimate for the loss-framing parameter increases to a value of 0.0305. The 

overall fit of the model moments (now 14 in total) relative to the empirical counterpart, is again 

very good with a criterion function value of 0.0095 and a mean relative error of 2.01%. The 

graphical illustration shows that both the conditional stock and the work hours shares nearly 

coincide with the empirical counterparts. Moreover, all moments of the conditional stock share 

and all but two moments of the work hours share lie within the 95% confidence bounds. Yet 

due to the still low values for the time discount factor and the EIS, the model-predicted financial 

wealth-to-income ratios are considerably lower than the ones in the data, for all age groups.  

--- Figure 1 here ---  

 
15 We do not display confidence bands in the figures given that the model and data lines are for some target 

variables very close to each other and the corresponding confidence band is narrow.  
16 This is equivalent to a loss-aversion parameter 𝜆 of 3.2048 given a narrow framing parameter 𝑏2 of 0.1 as in the 

two-parameter approach of Barberis and Huang (2009). Details can be found in Appendix A. 
17 As pointed out by Fagereng et al. (2017), the very large sample size as well as the small standard errors of the 

targeted empirical moments explain the small standard errors of the optimal preference parameters. 
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The third estimation combination targets the age profiles of all three empirical variables 

for stockholders; optimal parameter estimates appear in column (3) of Table 3. In addition, we 

also report in Table 4 numerical values for the 21 moments generated by the model and the data 

Compared to our previous results, the estimated risk aversion, leisure, and bequest motive 

parameters are rather similar, while the loss-framing parameter increases to an estimate of 

0.0253. The discount factor also increases substantially to a value of 0.9484, which is close to 

typically values used in the life-cycle literature (Gomes and Michaelides 2005; Love 2010; 

Ameriks et al. 2011). The EIS now grows to 1.4764, more in line with the values used in the 

long-run risk literature focused on explaining asset pricing patterns. In that work, the EIS is 

usually assumed to be above one, as theoretically shown by Bansal and Yaron (2004); the 

empirical evidence supports this value (Bansal et al. 2007). Again, the loss-framing parameter 

Λ is well above zero, underscoring the conclusion that it is pivotal in helping us match the 

empirical moments of our chosen target variables. 

                                                     --- Table 4 here ---     

The overall fit of the model is very good, with a criterion function value of 0.0540; the 

model matches most of the 21 moments nearly perfectly. Specifically, Panel c.1 of Figure 3 

shows almost no visible difference between the moments predicted by the model and the data 

for the conditional stock share. The numerical values depicted in Table 4 show that the greatest 

absolute difference between data and model prediction is only 1.02 percentage points for the 

fifth age group. The fit for the work hours share is also very good; only for the first and last age 

group does the model predict slightly higher values than the data. Notwithstanding that point, 

the resulting absolute differences of 0.0154 weekly work hours for the first age group and 

0.0305 for the oldest age group are still low. A similar picture arises for the financial wealth-

to-income ratios. The numerical values of model and data moments are again very close to each 

other. The only model-predicted moment that is clearly too low compared to the empirical target 

is the financial wealth-to-income ratio for the oldest group (8.0885 versus 9.5641).18 Yet the 

overall fit of the model is still very good, as the mean relative error for the 21 moments relative 

to the empirical counterparts is very low (3.60%). 

In summary, it can be concluded that the life-cycle model with the proposed preference 

specification nicely fits the assigned empirical target variable moments, though it does less well 

 
18 These results do not stem from the construction of the age groups as we also perform an analysis with 14 age 

groups for each variable, which is equal to the maximum number of age groups if each target variable receives 

equal weighting in the estimation. The fit of the estimated model shows a good fit for these 42 moments, too.  
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fitting the financial wealth-to-income ratio for the older groups. Our parameter estimates are 

mainly in line with values reported in other studies. Additionally, the estimates for both the 

loss-framing parameter and the bequest parameter are always well above zero, indicating that 

they are key parameters needed to match these empirical variables. 

4.2 Comparison to Preference Specifications without Loss Framing 

It is naturally of interest to compare the previous results to those of alternative preference 

specifications without loss framing. Accordingly, we repeat the SMM estimation for the case 

with three target variables over all 21 moments, but this time we use traditional CRRA- and 

Epstein-Zin preferences defined over consumption, leisure, and a bequest motive. Disutility of 

losses from risky stock investments is consequently not part of the preference specification.19  

 Estimation results for the optimal set of preference parameters appear in Panel B of Table 

5. For comparison purposes, column (1) repeats the results for the model with loss framing, 

while columns (2) and (3) document the optimal parameter values for Epstein-Zin and CRRA 

preferences. The corresponding Figure 2 contrasts the age-profile of the model-implied 

moments with the empirical counterparts. 

 --- Table 5 here --- 

--- Figure 2 here --- 
 

For Epstein-Zin preferences, the parameter estimates for the leisure parameter, the EIS, 

and the risk aversion do not differ greatly, compared to the loss-framing case. Yet the estimates 

for the time discount factor are significantly lower, while the parameter for the bequest strength 

is much higher. Altogether, the fit of the model is considerably worse than that of the baseline 

model (with a criterion function value of 1.2832). The mean relative error of 16.71 here is more 

than four times higher than that of the model with a loss-framing component. An examination 

of the conditional stock share (dotted line in Figure 2) yields a good fit of the empirical moments 

(solid line) for the first three age groups. For older age groups, however, the Epstein-Zin model 

predicts a much too high or too low conditional stock share, versus the data.  

Overall, then, we conclude that the explanatory power of the Epstein-Zin model is inferior 

to that of the loss-framing model. This is also evident for the matching results of the financial 

wealth-to-income ratio, where results are reasonable only for the second to fourth age groups. 

In contrast, for the youngest group, the ratio is too high, and for the oldest three groups, the 

 
19 Given that the specifications differ with respect to the number of parameters, we reduce the length of the Sobol 

sequence of the parameter grid in the first step of the SMM estimation. 
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ratio is far too low compared to the data. Interestingly, this is the case even though the bequest 

parameter 𝑏 has a significantly higher estimate (5.98 versus 3.34) than in the baseline model 

with loss framing. This, in turn, strengthens our conjecture that the stock market loss-framing 

parameter offers an important channel that the other parameters cannot achieve (even in 

conjunction). The work hours share for all age groups is well below both the data and that 

implied by the baseline model. 

For the model with CRRA preferences and a bequest motive, the preference parameter 

estimates are similar to those for Epstein-Zin preferences. While the discount factor is even 

lower and close to the parameter bound, the bequest parameter is higher. The overall fit of the 

model is worse (the criterion function value is 1.7391) compared to that of the baseline model, 

and also compared to Epstein-Zin preferences. The mean relative error of 20.71% is six times 

higher compared to the model with loss framing. Also a direct comparison of the moments 

predicted in Figure 2 reveals that the explanatory power of the life-cycle model with CRRA 

preferences (dashed-dotted lines) does not stand up to that of the model with loss framing. The 

work hours still has a decent fit for all but the youngest group, is closer to the data than that of 

Epstein-Zin preferences and fits only slightly worse than the baseline model. Yet the conditional 

stock share is always above the empirical moments and the loss-framing model. In addition, the 

fit of the financial wealth-to-income ratio is poor, as the household accumulates more financial 

wealth early on in life but not enough in later ages.  

4.3 Sensitivity Analysis of the Loss-Framing Parameter 

Thus far, all analyses used the optimal parameter values from the SMM estimation. In this 

section, we perform additional sensitivity analyses on  the stock market loss-framing parameter 

Λ, which we have shown to be central to the successful explanation of the data, especially 

regarding the portfolio choice decision. In particular, we are interested in the influence of the 

loss-framing parameter on the conditional stock share and the household stock market 

participation rate.  

 To this end, we start with the optimal set of preference parameters resulting from the 

structural estimation of the life cycle model with loss framing for the case with three target 

variables over seven age groups (Table 5 column 1). Next, the estimated optimal parameter 

values for 𝛼, 𝛽, 𝛾, 𝜓, and 𝑏 are retained, and the life-cycle model is solved repeatedly for 

varying parameters of the loss-framing parameter Λ. 
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 For the analysis, we construct an equally spaced linear grid of 1,000 parameter values for 

Λ ranging from 0.00 to 0.05, where the latter is roughly twice the value of the respective 

estimate from the structural estimation. The resulting outcomes of interest generated by the 

various life-cycle models, namely the ratio of households participating in the stock market (left 

side) and the share of financial wealth participants invested in equities (right side), are displayed 

as contour plots in Figure 3.  

--- Figure 3 here ---  

For the stock market participation rate, the results show a clear pattern: the participation 

rate is around 1.0 for nearly the entire work phase of the household’s life cycle (dark red 

surface) for most values of the loss-framing parameters. Moreover, for ages 60 onward, the 

participation rate is 1.0 for all parameter values. This is probably a result of the strong bequest 

motive needed to match the wealth accumulation, not counterbalanced by a stronger loss-

framing motive. A loss-framing value of Λ = 0.035 is a cutoff point, after which the 

participation probability drops below 100%. The loss-framing parameter of Λ = 0.0256 found 

in the SMM estimation procedure for stockholders is clearly below this cutoff point, and it 

generates a model-implied participation rate for all ages of 100%, exactly as in the data. This 

further improves the already excellent matching result of the model with loss-framing 

preferences for the stockholder subgroup. 

Next, we ask whether the model can replicate empirical participation rates in the entire 

population. Here the results are less clear: the transitions are very rapid from very high to very 

low participation rates of nearly zero (dark blue area). Only for a small corridor of parameter 

values (green to yellow area) is the participation rate consistent with empirical rates seen in the 

overall population (around 0.60; see also Table 2). Yet the required parameter values that ensure 

consistency of model predictions with empirical participation rates are not constant, but instead 

rise with age. Furthermore, the results are very sensitive, i.e. small deviations from the required 

parameter values lead to either full or no stock market participation. Both are unfavorable 

properties for a structural estimation of the model which also includes empirical participation 

rates. 

The right side of Figure 3 shows that the life-cycle pattern of the conditional stock share 

also depends on the loss framing parameter. For low values, the share invested in stocks is 

decreasing with age, while it rises with age for relative high parameter values. Interestingly, for 

mid-level loss framing values (from 0.02 to 0.03), the stock share remains nearly constant with 
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age. Within this relative broad range, a parameter value of Λ = 0.0256 leads to stock shares 

between 0.40 - 0.45 for the different age groups that are consistent with those observed in the 

data. In contrast to the participation rates, small deviations from this parameter value produce 

only moderate changes in the model’s predicted stock rates. Yet a value for the loss-framing 

parameter of about 0.025 leads to participation rates of 1.0 as the left side of Figure 3 

demonstrates, which is perfectly appropriate for the subgroup of stockholders but not for the 

entire population. Conversely, the required value of at least 0.035 to bring the participation rates 

predicted by the model in line with the empirical values of the overall population leads to very 

low equity ratios of about 10% (see dark blue area right side of Figure 6), which is clearly 

inconsistent with the data. 

Summing up, we find that both the conditional stock share and stock market participation 

rates are plausibly sensitive to the loss-framing parameter. Higher loss-parameter values lead 

to lower conditional stock shares, as well as lower participation rates. Yet the ability of the loss-

framing parameter to fit model results to empirical values depends on one’s objective. That is, 

empirical conditional stock shares are replicated very well by an appropriate choice of the loss-

framing parameter: the optimal loss framing value leads to a 100% participation rates in the 

stock market, exactly appropriate to the subgroup of stockholders. Yet those parameter values 

are not suitable to explain the empirical age profile of participation rates. Of course, one must 

also bear in mind that the other preference parameters whose values are fixed during the 

analysis also affect the results, most notably those implying a strong savings motive. Next, we 

turn to an examination of whether a plausible parameter vector that resolves this dilemma can 

be achieved by varying the other preference parameters in the same way.   

5 Analysis for the Entire Population 

In the following section, we structurally estimate the life-cycle model with loss framing 

preferences as in equation (1), but now we use data for the entire population and not just 

stockholders as in the preceding section. Consequently, our main challenge is to explain the 

limited stock market participation of U.S. households. There are now four empirical target 

variables over the seven age groups (i.e. 28 moments), as the stock market participation rate is 

added. Here we define this as an indicator variable depending on whether the household has a 

positive allocation of financial wealth to stocks. Additionally, wealth accumulation is now 

proxied by the financial wealth-to-income ratio unconditional on the asset allocation. We 
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structurally estimate the second-stage parameters for each model again using the SMM 

procedure outlined in section 3.2.2. 

5.1 Models 

As pointed out by Gomes (2020) and Gomes et al. (2021), there are four broad explanatory 

approaches for stock market non-participation: preferences that exhibit first-order risk aversion, 

exogenous background risks, stock market participation costs, and peer effects. Our life-cycle 

model is capable of straightforwardly accommodating the first three approaches, which we do 

using three different model specifications; our goal is to evaluate whether these can explain the 

28 empirical target moments.  

The first approach is the baseline loss-framing model developed in the previous section, as 

our preference specification exhibits first-order risk aversion. The second specification 

introduces a heightened risk for the household; given that the focus of this study is stock market 

loss framing, we let the risk affect the stock market as it is the sole risk that affects both the 

work and the retirement phase.20 In particular, we let the stock follow a Markov regime-

switching process, in which the expected stock return shifts between two regimes with differing 

mean and volatility.21 Using total return data from the S&P 500 index, the estimation utilizing 

the expectation-maximization (EM) algorithm results in a first regime that resembles a bear 

market with negative expected returns and heightened volatility levels, and a second regime 

resembles a bull market with positive returns and modest volatility (see Appendix B.6 for 

details).   

 Our third specification extends the baseline model by assuming pecuniary per-period stock 

market participation costs, as in Fagereng et al. (2017). In this case, the number of parameters 

in the structural estimate increases to seven because per-period participation costs are included 

in addition to the six preference parameters.  

 
20 An alternative source of risk possible in our model framework would be a combination of labor and health risks. 

Labor risk could be either personal disaster risk like unemployment spells (Bagliano et al. 2019; Bagliano et al. 

2021) or countercyclical labor income risk (Catherine 2022; Shen 2021) that affects the household’s working life, 

while the health risk (Capatina 2015; Yogo 2016) would affect the retirement phase of the household. 
21 Regime-switching models have the appeal that they can generate rather flexible return distributions, including 

skewness, excess kurtosis, and volatility clustering (Turner et al. 1989; Pagan and Schwert 1990), while making 

the model still computationally tractable. Additionally, regime switching seems to make sense from a behavioral 

point of view, as there is evidence that individual investors see the stock market as a Markov chain. While some 

investors believe that past stock returns tend to persist in the future (De Bondt 1993; Greenwood and Shleifer 

2014), other investors believe that stock returns tend to reverse (Dominitz and Manski 2011; Heiss et al. 2019). 
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As we shall show, each model specification is appealing given the evidence documented 

by Choi and Robertson (2020) and Bender et al. (2022) that loss aversion, disaster risk, and 

fixed participation costs are all important factors in households’ portfolio choice decisions. 

5.2 Estimation Results  

The estimation results are presented in Table 6, while the model-implied moments are 

compared to the empirical moments in Figure 4.  

--- Table 6 here --- 

 --- Figure 4 here --- 

Model 1 (Loss Framing) has similar parameter estimates as the most complex model for 

stockholders. Only the loss-framing parameter rises substantially in value to an estimated 

0.0356. The overall fit of the model is not good, with a criterion function value of 2.999 and an 

MRE of 0.2420. The worse fit stems mainly from the stock market participation rate, which is 

increasing in age and predicts full participation for the oldest three age groups. The fit for the 

other three variables is decent, although the conditional stock share for the younger age groups 

is too low, and too high for the oldest age groups. The financial wealth-to-income ratio is also 

too low for the oldest groups. The work hours share is flat at a value of around 0.4. These results 

support the conjecture that a higher loss-framing parameter decreases stock market 

participation, but it also simultaneously pushes the conditional stock share down, making a 

simultaneous fit for these variables challenging. Overall, this confirms our earlier point that the 

loss-framing preference specification alone does not discourage households from completely 

shying away from the stock market 

Model 2 (Loss Framing with Regime Switching) extends Model 1 by assuming that the 

stock follows a two-dimensional regime-switching process. It has similar parameter estimates 

as the model for stockholders and Model 1 except for the loss-framing parameter. The stock 

market loss-framing parameter (estimated at 0.0860) is more than double, and three times the 

value found in models without regime-switching. This is a result of the regime-switching 

behavior of the stock since the stock process has different parameters for each regime which 

themselves enter the loss-framing part of the preferences via both the conditional expectation 

of losses as well as the probability of losses. For the bear market regime 1, which has a negative 

drift and high volatility in the stock process, the implied loss aversion skyrockets. 

Consequently, the model set-up implies countercyclical loss aversion. This behavior is in line 

with evidence reported by Hwang and Satchell (2010) that loss aversion changes with market 
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conditions. The overall fit of the model is reasonable with a criterion function value of 1.7002 

and an MRE of 0.1884; both are lower than the values for the one-regime model. The better fit 

mainly stems from the stock market participation rate, which nevertheless is always higher than 

in the data. For the oldest four age groups, the stock market participation rate stays constant at 

0.85, equal to the invariant probability of the normal regime in the switching process. The stress 

regime is so disastrous that the affected household exits the stock market. The conditional stock 

share is again increasing in age; at first it remains below its empirical counterpart, and then it 

rises above it. The financial wealth-to-income is increasing in age and is a bit too high for the 

last two age groups. The work hours share does not change compared to the previous model, a 

consequence of choosing a work hour share of 0.40 as threshold for receiving an overtime wage 

premium. Hence, in most simulation paths, the household will seek to take advantage of higher 

wages, but this is moderated by its strong preference for leisure.  

Model 3 (Loss Framing with Participations Costs), which extends Model 1 by including 

stock market participation costs, has different parameter estimates compared to the previous 

two. Most notably, the risk aversion decreases to a value of 2.8991, while the bequest parameter 

is quite high, at 5.2232. The loss-framing parameter decreases to a value of 0.0217, more in 

line with the estimates for the stockholder model. The estimated value for 𝜒 of 1.9012, defined 

in units of permanent income, translates into expected annual participation costs 𝜙 of 720.14 

dollars for a 25 year old household. This is a higher value than typically found in the literature 

(see Fagereng et al. 2017). The overall fit of the model is very good with a criterion function 

value of 0.4308 and an MRE of 0.0956. The participation rate and the conditional stock share 

show a hump-shape as observed in the data, while the financial wealth-to-income fits similarly 

as in the model without participation costs. 

The preceding analysis illustrates that, in order to match the population moments for all 

four target variables, the proposed life-cycle model with stock market loss framing needs to be 

coupled with per-period stock market participation costs. The other model specifications have 

difficulty matching observed stock market participation patterns. 

6 Analysis with Heterogeneous Agents   

Our structurally estimated model with a single representative agent matches the empirical 

target variables for the overall population very well. Yet the model’s explanatory power as 

measured by the MRE is still lower compared to the model for the stockholders alone (9.6% 

versus 3.6%). Moreover, the model is unable to account for the empirical difference in the age 
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patterns of financial wealth-to-income ratio for households who do not participate in the stock 

market, versus the stockholders alone. For example, Table 2 shows that stockholders have about 

six times as much financial wealth in the retirement phase as non-stockholders. To tackle both 

issues, we perform an analysis with ex-ante heterogeneous agents. 

6.1 Approach 

There is general consensus that individual investors exhibit pronounced heterogeneity in 

preferences (Ghosh et al. 2020; Calvet et al. 2021) and beliefs (Giglio et al. 2021; Meeuwis et 

al. 2022).22 In our approach, all heterogeneity is preference-based and not belief-based. 

Moreover, we differentiate ex ante between three groups of investors defined as follows: the 

first group represents stockholders facing no participation costs; the second represents non-

stockholders who never participate in the stock market for reasons other than preferences and 

participation costs; and the third group, which we refer to as the blended group, consists of 

households that do face some stock market participation costs. The rationale behind this 

approach is that participation costs cannot be the sole explanation for stock market non-

participation, as even newly wealthy households do not always participate in the stock market 

(Andersen and Nielsen 2011; Briggs et al. 2021).23  

The weights for the different groups are determined ex ante, and are assumed to be 30% 

stockholders, 20% non-stockholders, and 50% for the blended group. The first two weights are 

inferred from the SCF data from 1989 to 2019. In the dataset, 24.73% of the households held 

stocks solely in quasi-liquid retirement accounts, which corresponds to facing zero stock market 

participation costs since these accounts are usually set up by the employer and nowadays 

predominantly default workers to a target-date fund with a substantial equity portion (Mitchell 

and Utkus 2021; Parker et al. 2021).24 The remaining households we assume to pay no 

participation costs for other possible reasons such as having bequeathed equity wealth. The 

assumed weight of 20% for the non-stockholder group represents roughly half of the 38.20% 

households not participating in the stock market reported in the SCF. The weight of the blended 

 
22 There is also substantial heterogeneity in returns of wealth as documented by Campbell et al. (2019), Bach et al. 

(2020), and Fagereng et al. (2020). 
23 In addition, the non-stockholder group can reflect other possible individual-level explanations outside the scope 

of our modeling framework, such as financial literacy (Van Rooij et al. 2011), trust (Guiso et al. 2008), and peer 

effects (Hong et al. 2004); such information is not available in our dataset. 
24 This is in effect since the Pension Protection Act (PPA) of 2006. 
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group, which consists of both stockholders and non-stockholders, is a residual weight such that 

the total weight of the groups sums to one.  

Contrary to other approaches in the literature that aggregate each group to jointly match 

population moments, we choose to structurally estimate the household group for stockholders 

and non-stockholders in order to match their standalone target variables, while the blended 

group is estimated such that it minimizes the residual distance that is needed for the three-group 

model to match the population moments. 

6.2 Estimation Results 

The optimal parameter values for the three distinct household groups are displayed in Panel 

B of Table 7. Results for the first household group are equivalent to those having three target 

variables for stockholders in Section 4, so we do not cover them again. The model for non-

stockholders must only fit the age pattern of the financial wealth-to-income ratio and the work 

hours share. Given that this type of household does not have the opportunity to invest in the 

stock market, it does not exhibit loss framing. The resulting estimates yield a low discount 

factor, as well as very low risk aversion and a very high bequest motive. The rather low risk 

aversion of about 1.5 is consistent with prior studies on structural life cycle models for U.S 

households which do not consider portfolio choice with risky assets. For example, Gourinchas 

and Parker (2002) estimate values around 1.5 and De Nardi et al. (2010) of 3.5. In asset pricing 

studies and in structural models with risky investments (as ours), much higher values are 

routinely used. The overall fit of the model is very good with a criterion function value of 

0.0229 and a mean relative error of 0.0316. The blended group has similar parameter estimates 

as the population model with participation costs shown previously in Table 6 (column 3). Most 

notably, the estimated loss-framing parameter takes the value of 0.0088, significantly lower 

than the corresponding estimate of 0.0217 for the population. The estimate of 𝜒 increases from 

1.9012 to a value of 2.4899, which translates into expected annual participation costs 𝜙 of 

943.13 dollars for a 25 year old household. Both results are not unexpected, as the representative 

agent model with participation costs is similar to a combination of all three groups in the 

heterogeneous agent model. Since the group of shareholders is assumed to participate fully in 

the stock market and has a higher weight in the total population than the group of non-

shareholders, participation costs for the mixed group act as the main driving force to control 

stock market participation rates for the total population.   



31 

 

--- Table 7 here ---  

The same logic applies to the loss framing parameter as the main driver to control the 

conditional stock ratio in the total population. This is higher for the shareholder group than for 

the model with only one representative agent (0.0253 versus 0.0217). To balance this out, the 

degree of loss framing is lower for the blended group (0.0088). 

When it comes to the separate fit of the blended model, both the criterion function value 

of 0.2957 and the mean relative error of 0.0721 illustrate the very good model fit. The goodness-

of-fit metrics for the combined three-group model appear in Panel C of Table 7, while the 

model-implied moments of the combined three-group model can be contrasted to the empirical 

moments in Figure 5 and Table 8.25 The model is able to match all four assigned variables very 

well. The life cycle profiles of the participation rate and the conditional stock share are hump-

shaped, as in the data. Moreover, the relative difference between model and data moments is 

always below 10%. The financial wealth-to-income ratios implied by the model are now strictly 

increasing in age and are always close to the empirical counterpart. The work hours share is 

stable around a value of 0.405 for most age groups, and hence a bit below the share in the data. 

The model’s overall excellent fit is numerically confirmed by a criterion function value of 

0.0796 and a mean relative error of 0.0438, close to the numbers of the standalone models for 

stock- and non-stockholders. 

--- Table 8 here --- 

--- Figure 5 here --- 
 

Overall, this analysis yields two conclusions. First, our life-cycle model with preferences 

that include stock market loss framing fits the data moments for different investor groups of the 

population very well. Second, our heterogeneous agent model can account for the observed life-

cycle patterns of portfolio choice, wealth accumulation, and labor supply of U.S. households. 

6.3 Comparison of Estimated Models for Non-Targeted Empirical Phenomena 

In this section, we analyze the implications of our models for other empirical phenomena 

in household finance. Inasmuch as investment decisions are the primary objective of this study, 

the analyses to follow focus on differences in the life-cycle wealth accumulation between stock- 

and non-stockholders, and household portfolio choice decisions for different levels of financial 

wealth irrespective of age. Results for both evaluations appear in Figure 6. We only compare 

 
25 The predicted moments for each of the three subgroups are contrasted to the data moments both, numerically 

and graphically in Appendix E. 
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results from the single-representative-agent model with stock market participation costs 

(dashed lines) with those from the heterogeneous agent model (dotted lines), given that both 

are far superior to the other model specifications in explaining the population moments (solid 

lines). We discuss these results in the following two sections. 

                                                   --- Figure 6 here --- 

6.3.1 Wealth Accumulation by Investor Type 

As illustrated in the preceding section, the observed financial wealth-to-income ratios for 

stockholders at different ages are three to six times higher those of non-stockholders. This 

constitutes an important empirical fact that life-cycle models should account for, if they aim 

not only to explain the investment decisions for the population as a whole, but also seek to 

explain investment decisions of population subgroups. To examine this point, we examine both 

the data and the model results for stockholders versus non-stockholders. Figure 6 (Panel a) 

displays the financial wealth-to-income ratios for both types of households.  

 For the stockholder group (Figure 6a.1), both life-cycle models produce an increasing ratio 

of financial wealth to income over time, but below the observed values (solid line). Yet the ratio 

for the heterogeneous agent model (dotted line) is much higher and closer to the data, compared 

to that of the single-agent model (dashed line). This is numerically reflected in an MRE of 

0.2217 vs. an MRE of 0.3625. The same tendency is observed for the non-stockholder group 

(Figure 6.a.2), where the model-implied moments are above the empirical ones. Again, the 

heterogeneous agent model gives a better fit for that group, with an MRE of 0.5708 against an 

MRE of 1.5841 for the singe-agent model. 

Although not the overall objective of the structural estimation, the estimated heterogeneous 

agent model is evidently able to produce a significantly higher difference in the financial 

wealth-to-income ratios, compared to the single agent model. 

6.3.2 Portfolio Choice by Financial Wealth 

So far, our focus has been on life-cycle and thus age effects. Next, we focus on wealth 

effects and investigate whether the models for the population can account for the reality that 

the stock market participation and stock share increase with financial wealth in the U.S. 

(Wachter and Yogo 2010; Favilukis 2013; Kuhn et al. 2020).  

To this end, we start with the same sample of households used to obtain the empirical 

targets for the structural estimation; this group is derived from SCF waves 1989 to 2019, and it 

includes households age 25 to 80. Similar to Wachter and Yogo (2010), we first sort all 
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observations into deciles of financial wealth within each wave and then taking the mean of the 

stock participation rate and the conditional stock share within each decile over all waves. An 

analogous procedure is used for the two life-cycle models by sorting the simulated households 

age 25 to 80 into deciles of financial wealth. The two graphs below in Figure 6 (Panel b) 

displays the results.  

The empirical evidence shows that the stock market participation rate is steadily increasing 

in financial wealth, from a level below 0.1 for the first decile, to a value near 1.0 for the top 

decile. Moreover, the curve is concave. The participation rate in our life-cycle models is also 

increasing in wealth, but while the rate for the singe-agent model flattens out for all but the first 

decile at around 0.6, the rate implied by the heterogeneous agent model shows first higher then 

lower rates than in the data, but reaches nearly full participation for the highest wealth decile. 

The less than perfect fit for the first three deciles is reflected in the overall MRE of 0.5519 for 

the stock market participation rate, though this is still substantially lower than the MRE of 

0.9137 for the single-agent model. 

The empirical pattern of the conditional stock share is increasing in wealth, from a level of 

0.4 for the first decile, to nearly 0.55 for the top decile. The life-cycle simulations match the 

empirical conditional stock share for most deciles in the population rather well, although the 

share is hump-shaped in wealth. This result is expected, as both groups that target the 

conditional stock share show a hump-shaped share and increasing wealth by age, which is why 

the conditional stock share by wealth will be similar to the conditional stock share by age. The 

good fit for both models is reflected in the overall MRE of 0.0815 for the heterogeneous agent 

model and an MRE of 0.1090 for the single-agent model. Thus, to a large extent, the 

heterogeneous agent model generates the same pattern and level for portfolios choice by 

financial wealth as in the data (although they are not explicitly targeted). Given that the single-

agent model is also able to produce an increasing conditional stock share in financial wealth, 

our model provides an alternative preference-based explanation to that offered by Wachter and 

Yogo (2010), who use a life-cycle model with a non-homothetic preference specification to 

explain the increasing conditional stock share in wealth.26 

 
26 The best-fitting model for a stockholder and the population model with regime switching also give a rising 

conditional stock share in financial wealth, indicating that the proposed preferences with stock market loss framing 

are a driving force behind this result. 
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7 Conclusions 

This paper structurally estimates the parameters of a parsimonious life-cycle model of 

optimal consumption, portfolio choice, and labor supply that incorporates stock market loss-

framing in the specification of preferences. Stock market loss-framing is defined as the 

additional disutility that a household experiences by the expected shortfall on  stock investment 

return below a benchmark return. The model with stock market loss-framing can account for 

the empirical age-patterns of the stock share, financial wealth-to-income ratios, and work hours 

of U.S. stockholders. This is achieved with plausible preference parameter estimates, while the 

stock market loss-framing parameter and the bequest parameter are always well above zero. 

The predictive power of the model incorporating stock market loss-framing is also far superior 

to that of models with preference specifications that lack stock market loss-framing.  

Extending the model by adding in age-dependent per-period stock market participation 

costs simultaneously explains the empirical age-profiles of stock market participation, portfolio 

choice, wealth accumulation, and the labor supply patterns for the entire population. Finally, a 

model with heterogeneous agents further improves explanatory power, and it generates the 

observed discrepancy in wealth accumulation between stockholders and non-stockholders. 

Moreover, such a life-cycle model with stock market loss-framing, per-period participation 

costs, and heterogeneous agents explains the rise in stock market participation and conditional 

stock share with financial wealth. 
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Table 1: First-Stage Model Parameter Values 

This table presents the values for all first-stage model parameters. A × in the last column indicates that the 

respective parameter is estimated. Details on data and estimation methods for those parameters appear in 

Appendix B. All other parameters are calibrated. 𝑎𝑔𝑒̃ denotes the integer age of the household (equal to 𝑡 + 24) 

divided by 100 and 𝐺𝑃𝐷 is the acronym for the generalized Pareto distribution with its three parameters.  

    
    

Description Symbol Value/Source Est. 

Household Characteristics    

Starting Age 𝑡0 + 24 25  

Ending Age 𝑇 + 24 100  

Survival Probabilities 𝑝𝑡 HMD period life table 2017 × 
    

Capital Market    

Drift Stock Return 𝜇 0.0637 × 

Volatility Stock Return Shock 𝜎𝜂 0.1564 × 

Gross Risk-Free Rate 𝑅𝑓 1.0077 × 

Capital Gains Tax Rate 𝑡𝑐 0.15  

Management Fees 𝜅 0.0018  

Scaling Factor Stock Market Part. Costs 𝐹𝑡 0.0152(𝑡 + 24) × 
    

Labor Income    

Age-Independent Component Wage Rate 𝑤(∙) 1.6428 × 

Age-Dependent Component 1 Wage Rate 𝑤(∙) 6.4680(𝑎𝑔𝑒̃) × 

Age-Dependent Component 2 Wage Rate 𝑤(∙) −9.2595(𝑎𝑔𝑒̃)2 × 

Age-Dependent Component 3 Wage Rate 𝑤(∙) 3.3715(𝑎𝑔𝑒̃)3 × 

Under-Time Discount Wage Rate 𝑤(∙) -0.1979 × 

Over-Time Premium Wage Rate 𝑤(∙) 0.2126 × 

Volatility Permanent Wage Shock 𝜎𝜗 0.0896 × 

Volatility Transitory Wage Shock 𝜎𝜑 0.2463 × 

Correlation Wage and Stock Shock 𝜌log(𝜉),𝜂 0.0000 × 

Upper Bound Labor Share 𝑁̃ 0.6  

Lower Bound Labor Share 𝑁 0.0  

Yearly Waking Hours Υ 5200  

Labor Income Tax Rate 𝑡𝑙 0.3  
    

Retirement Income    

Benefit Replacement Ratio 𝜁 0.5838 × 

Proportional Medical Expenditures 𝜆 0.1175 × 

Volatility Net Retirement Income Shock 𝜎𝜀 0.3006 × 

Average Lifetime Working Hours 𝑁̅ 0.4  

Retirement Income Tax Rate 𝑡𝑟 0.1  

Retirement Age 𝐾 + 25 67  
    

Housing Costs    

Age-Independent Component Cost Function ℎ(∙) 0.5212 × 

Age-Dependent Component 1 Cost Function ℎ(∙) −1.5218(𝑎𝑔𝑒̃) × 

Age-Dependent Component 2 Cost Function ℎ(∙) 2.6889(𝑎𝑔𝑒̃)2 × 

Age-Dependent Component 3 Cost Function ℎ(∙) −1.7591(𝑎𝑔𝑒̃)3 × 
    

Distribution Starting Financial Wealth Ratio    

Stockholders (𝑊 𝑌⁄ )𝑖𝑛𝑖𝑡. 𝐺𝑃𝐷(0.0000, 0.0751, 1.0754) × 

Population (𝑊 𝑌⁄ )𝑖𝑛𝑖𝑡. 𝐺𝑃𝐷(0.0000, 0.1156, 1.0618) × 
    

    
 

ss 
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Table 2: Estimation Results for Empirical Target Variables 

This table presents the results of the estimation of the six empirical variables (mean values grouped into seven 

equidistant age buckets) which are targeted in the structural estimation throughout the paper. For each target 

variable, age, time, and cohort effects are disentangled using the method of Deaton and Paxson (1994). The 

stock participation rate, the conditional stock share, and the financial wealth-to-income ratios rely on the SCF 

(waves 1989 – 2019) where only observations with a positive dollar amount of financial wealth and a positive 

dollar amount of labor income are considered. The work hours share relies on the PSID (waves 1975 – 2017) 

where only observations of employed individuals with an hourly wage rate above $5 or below the 99th percentile 

of each wave are considered. Stock market participation is defined as an indicator variable equal to 1 if the total 

dollar stock allocation is above zero (column 2). The conditional stock share is the fraction of total equity to 

total financial wealth given a non-zero allocation to stocks (column 3). The financial wealth-to-income ratio for 

stockholders is defined as the ratio of total financial wealth to annual labor or retirement income, given: (i) a 

positive allocation to stocks for the stockholder group (column 4), (ii) a zero allocation to stocks the for non-

stockholders group (column 5), and (iii) for the entire population (column 6). The work hours share is defined 

as the weekly work hours reported in PSID divided by an assumed 100 waking hours per week (column 7). Each 

of the seven age groups for the stock participation rate, the conditional stock share, and financial wealth-to-

income ratios, consist of eight consecutive years of life, starting from 25 and ending with 80. Each age group 

for the work hours share uses six consecutive years of life, starting from 25 and ending with 66. Standard errors 

for each regression coefficient are displayed in parentheses below each, obtained by bootstrapping the data using 

1,000 resamples. One, two, and three asterisks indicate that the coefficient is statistically significant at the 10%, 

5%, and 1% significance level, respectively. 

       
       

 Empirical Target Variable 

 
Stock Part. 

Rate 

Conditional 

Stock Share 

Financial Wealth-to-Income Ratio Work 

Hours 

Share Stockholder 
Non-

Stockholder 
Population 

Age Group 1 0.5203*** 0.3870*** 0.7471*** 0.2626*** 0.5245*** 0.4184*** 

 (0.0105) (0.0078) (0.0762) (0.0516) (0.0530) (0.0049) 

Age Group 2 0.5837*** 0.4240*** 1.0026*** 0.3511*** 0.6890*** 0.4190*** 

 (0.0118) (0.0086) (0.0908) (0.0682) (0.0570) (0.0049) 

Age Group 3 0.6427*** 0.4401*** 1.6499*** 0.5517*** 1.1201*** 0.4189*** 

 (0.0132) (0.0090) (0.1306) (0.0983) (0.0743) (0.0048) 

Age Group 4 0.6477*** 0.4632*** 2.6184*** 0.7301*** 1.7355*** 0.4210*** 

 (0.0120) (0.0098) (0.1823) (0.1340) (0.0983) (0.0050) 

Age Group 5 0.6546*** 0.4500*** 4.7334*** 0.8600*** 2.9938*** 0.4184*** 

 (0.0123) (0.0098) (0.2778) (0.1966) (0.1310) (0.0053) 

Age Group 6 0.5614*** 0.4201*** 7.4298*** 1.4551*** 4.1488*** 0.4107*** 

 (0.0149) (0.0108) (0.3799) (0.2633) (0.1956) (0.0051) 

Age Group 7 0.5288*** 0.4286*** 9.5641*** 1.5251*** 4.8879*** 0.3897*** 

 (0.0130) (0.0113) (0.4118) (0.2961) (0.1874) (0.0057) 

Observations 207,409 128,057 128,057 79,352 207,409 1,305,385 
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Table 3: Structural Estimation Results for Stockholders 

This table presents structural estimation results for the model with loss framing preferences for stockholders. 

Panel A indicates which combination of target variable moments is used for that estimation, and Panel B presents 

estimation results. The standard error for each parameter appears in parentheses, obtained by bootstrapping the 

simulated data using 1,000 resamples. The criterion function value is the sum of the squared percentage 

deviations of the model and the data moments and is the targeted distance function in the estimation. The mean 

relative error denotes the mean of the percentage deviation of the model moments and the targeted data moments. 

The number of moments denotes the total number of targeted moments in the structural estimation. 

    
    

 Empirical Target Variable Combination 

 (1) (2) (3) 

Panel A: Targeted Variables    

Conditional Stock Share × × × 

Financial Wealth-to-Income Ratio   × 

Work Hours Share  × × 

    

Panel B: Parameters    

Discount Factor (𝛽) 0.8417 0.8982 0.9484 

 (2.14e-06) (2.44e-07) (3.04e-07) 

Leisure (𝛼) 1.3518 1.1693 1.4758 

 (4.49e-06) (3.74e-07) (1.53e-07) 

EIS (𝜓) 0.2677 0.5582 1.4818 

 (5.47e-06) (8.09e-07) (1.62e-07) 

Risk Aversion (𝛾) 8.6455 8.3211 9.8435 

 (2.47e-06) (1.09e-06) (2.91e-06) 

Bequest (𝑏) 3.4424 4.0110 3.3426 

 (1.69e-06) (9.57e-07) (3.14e-07) 

Loss Framing (Λ) 0.0201 0.0305 0.0253 

 (3.68e-07) (3.99e-07) (6.10e-08) 

Criterion Function Value 0.0016 0.0095 0.0540 

Mean Relative Error (MRE) 0.0132 0.0201 0.0360 

Number of Moments 7 14 21 
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Table 4: Model vs. Data Moments in the Stockholder Model 

This table compares the moments implied by the structural estimation and the empirical moments for the 

stockholder group; the key variables simultaneously targeted are conditional stock share, financial wealth-to-

income ratio, and work hours share. Empirical moments are estimated using the SCF (1989–2019) and the PSID 

(1975–2017), and by utilizing the methodology of Deaton and Paxson (1994). Model moments are those implied 

by the parameter combination that gives the best fit in the structural estimation; these are the mean values from 

100,000 simulated life cycles based on optimal feedback controls. Each of the seven age groups for the 

conditional stock share and financial wealth-to-income ratios, consist of eight consecutive years of life, starting 

from 25 and ending with 80. Each age group for the work hours share uses six consecutive years of life, starting 

from 25 and ending with 66.  

        
        

 Age Group 

 1 2 3 4 5 6 7 

Panel A: Conditional Stock Share     

Data 0.3870 0.4240 0.4401 0.4632 0.4500 0.4201 0.4286 

Model 0.3909 0.4264 0.4406 0.4539 0.4398 0.4218 0.4378 

        

Panel B: Financial Wealth-to-Income Ratio    

Data 0.7471 1.0026 1.6499 2.6184 4.7334 7.4298 9.5641 

Model 0.7731 1.0298 1.5832 2.6962 4.6735 8.3233 8.0885 

        

Panel C: Work Hours Share     

Data 0.4184 0.4190 0.4189 0.4210 0.4184 0.4107 0.3897 

Model 0.4338 0.4076 0.4084 0.4117 0.4115 0.4102 0.4202 
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Table 5: Structural Estimation Results for Preferences without Loss Framing 

This table compares structural estimates of the baseline preference specification with Loss Framing (column 1) 

with Epstein-Zin preferences (column 2), and CRRA preferences (column 3) for stockholders. Panel A indicates 

the combination of target variable moments used for the estimation and Panel B presents the estimation results. 

The standard error for each parameter is displayed in parentheses, obtained by bootstrapping the simulated data 

using 1,000 resamples. The criterion function value is the sum of the squared percentage deviations of the model 

and the data moments; this is the targeted distance function in the estimation. The mean relative error denotes 

the mean of the percentage deviation of the model moments and the targeted data moments. The number of 

moments denotes the total number of targeted moments in the structural estimation. 

    
    

 Preference Specification 

 
(1) 

Loss Framing 

(2) 

Epstein-Zin  

(3) 

CRRA  

Panel A: Targeted Variables    

Conditional Stock Share × × × 

Financial Wealth-to-Income Ratio × × × 

Work Hours Share × × × 

    

Panel B: Parameters     

Discount Factor (𝛽) 0.9484 0.8626 0.8390 

 (3.04e-07) (7.36e-08) (1.80e-07) 

Leisure (𝛼) 1.4758 1.2609 1.3092 

 (1.53e-07) (1.87e-07) (1.93e-07) 

EIS (𝜓) 1.4818 1.0212  

 (1.62e-07) (1.82e-07)  

Risk Aversion (𝛾) 9.8435 9.9717 8.0502 

 (2.91e-06) (8.89e-07) (5.10e-07) 

Bequest (𝑏) 3.3426 5.9895 6.5556 

 (3.14e-07) (8.12e-07) (4.83e-07) 

Loss Framing (Λ) 0.0253   

 (6.10e-08)   

Criterion Function Value 0.0540 1.2832 1.7391 

Mean Relative Error (MRE) 0.0360 0.1671 0.2071 

Number of Moments 21 21 21 
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Table 6: Structural Estimation Results for the Population Models 

This table presents the results of the structural estimation for the models for the population. The baseline 

preference specification (Loss Framing) appears in column 1, the loss-framing model where the stock process 

follows a regime-switching process (Loss Framing + Regime Switching) in column 2, and the loss-framing 

model with participation costs (Loss Framing + Participation Costs) in column 3. Panel A indicates the 

combination of target variable moments used for the estimation, and Panel B presents results. The standard error 

for each parameter is displayed in parentheses, obtained by bootstrapping the simulated data using 1,000 

resamples. The criterion function value is the sum of the squared percentage deviations of the model moments 

and the data moments and is the targeted distance function in the estimation. The mean relative error denotes 

the mean of the percentage deviation of the model moments and the targeted data moments. The number of 

moments denotes the total number of targeted moments in the structural estimation. 

    
    

 Model 

 

(1) 

Loss Framing 

 

 

(2) 

Loss Framing 

+ Regime 

Switching  

(3) 

Loss Framing  

+ Participation 

Costs 

Panel A: Targeted Variables    

Stock Market Participation Rate × × × 

Conditional Stock Share × × × 

Financial Wealth-to-Income Ratio × × × 

Work Hours Share × × × 

    

Panel B: Parameters     

Discount Factor (𝛽) 0.9378 0.9364 0.8854 

 (5.64e-08) (1.02e-07) (4.79e-08) 

Leisure (𝛼) 1.5934 1.5225 1.5090 

 (9.27e-08) (8.22e-08) (1.61e-08) 

EIS (𝜓) 1.1905 1.2193 0.5163 

 (4.57e-07) (8.65e-08) (6.45e-07) 

Risk Aversion (𝛾) 8.5205 10.1594 2.8991 

 (4.35e-07) (5.02e-07) (2.75e-07) 

Bequest (𝑏) 2.8361 3.7693 5.2232 

 (4.53e-08) (2.93e-07) (3.13e-07) 

Loss Framing (Λ) 0.0356 0.0860 0.0217 

 (8.95e-08) (4.54e-08) (4.73e-08) 

Participation Costs (χ)   1.9012 

   (1.92e-07) 

Criterion Function Value 2.9999 1.7002 0.4308 

Mean Relative Error (MRE) 0.2420 0.1884 0.0956 

Number of Moments 28 28 28 
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Table 7: Structural Estimation Results for the Heterogeneous Agent Model 

This table presents the results of the structural estimation for the heterogeneous agent model. The three types of 

investors are (1) stockholders with loss framing and no participation costs (Stockholder), (2) non-stockholders 

with no loss framing and no participation costs (Non-Stockholder), and (3) stock- and non-stockholders with 

loss framing and participation costs (Blended). Panel A indicates the combination of target variable moments 

used in the structural estimation, and Panel B presents the parameters of the model with generates the best 

matching fit. The blended model is estimated such that it fits the residual distance needed for the entire three-

group model to fit the stock market participation rate, the conditional stock share, the financial wealth-to-income 

ratio, and the work hours share for the entire population. The standard error for each parameter is displayed in 

parentheses, obtained by bootstrapping the simulated data using 1,000 resamples. Panel C displays the fit of the 

combined three-group model that consists of 30% stockholders, 20% non-stockholders, and 50% blended 

households. The criterion function value is the sum of the squared percentage deviations of the model moments 

and the data moments and is the targeted distance function in the estimation. The mean relative error denotes 

the mean of the percentage deviation of the targeted model moments and the data moments. The number of 

moments denotes the total number of targeted moments in the structural estimation. 

    
    

  Group  

 
(1) 

Stockholder 

(2) 

Non-

Stockholder 

(3) 

Blended 

Panel A: Targeted Variables    

Stock Market Participation Rate Blended   × 

Conditional Stock Share ×  × 

Fin. Wealth-to-Income Ratio Stockholder ×   

Fin. Wealth-to-Income Ratio Non-Stockholder  ×  

Fin. Wealth-to-Income Ratio Blended   × 

Work Hours Share × × × 

    

Panel B: Parameters     

Discount Factor (𝛽) 0.9484 0.8302 0.8523 

 (3.04e-07) (1.66e-08) (1.43e-08) 

Leisure (𝛼) 1.4758 1.1487 1.5280 

 (1.53e-07) (2.07e-08) (1.06e-08) 

EIS (𝜓) 1.4818 1.0796 0.4641 

 (1.62e-07) (3.05e-08) (1.17e-08) 

Risk Aversion (𝛾) 9.8435 1.4948 2.9349 

 (2.91e-06) (1.69e-08) (2.49e-08) 

Bequest (𝑏) 3.3426 6.5964 6.0135 

 (3.14e-07) (1.52e-07) (4.67e-08) 

Loss Framing (Λ) 0.0253  0.0088 

 (6.10e-08)  (1.11e-08) 

Participation Costs (χ)   2.4899 

   (1.37e-08) 

Criterion Function Value 0.0540 0.0229 0.2957 

Mean Relative Error (MRE) 0.0360 0.0316 0.0721 

Number of Moments 21 14 28 

    

Panel C: Heterogeneous Agent Model  Population = 30% ‧ (1) + 20% ‧ (2) + 50% ‧ (3) 

Criterion Function Value 0.0796 

Mean Relative Error (MRE) 0.0438 

Number of Moments 28 
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Table 8: Model vs. Data Moments for the Heterogeneous Agent Model 

This table shows for four target variables the age-dependent empirical moments using SCF (1989–2019) and 

PSID (1975–2017) data vis-a-vis the moments implied by the structural estimation of the heterogeneous agent 

model with three investor types: 30% stockholders, 20% non-stockholders, and 50% blended households. For 

each subgroup we use the parameter values that gives the best fit in the structural estimation as reported in Table 

7 Panel B and generate mean values from 100,000 simulated life cycle profiles based on optimal feedback 

controls. Subsequently the results of the subgroups are aggregated into the entire population and summarized in 

seven age buckets. Each of the seven age groups for the stock participation rate, the conditional stock share, and 

the financial wealth-to-income ratio consist of eight consecutive years of life, starting from 25 and ending with 

80. Each age group for the work hours share uses six consecutive years of life, starting from 25 and ending with 

66. 

        
        

 Age Group 

 1 2 3 4 5 6 7 

Panel A: Stock Market Participation Rate     

Data 0.5190 0.5805 0.6396 0.6447 0.6521 0.5586 0.5255 

Model 0.5134 0.5928 0.6057 0.6297 0.6177 0.5585 0.5744 

        

Panel B: Conditional Stock Share     

Data 0.3870 0.4240 0.4401 0.4632 0.4500 0.4201 0.4286 

Model 0.3851 0.4188 0.4539 0.4847 0.4654 0.4380 0.3936 

        

Panel C: Financial Wealth-to-Income Ratio     

Data 0.5264 0.6898 1.1200 1.7333 2.9880 4.1355 4.8625 

Model 0.5640 0.7448 1.0747 1.6069 2.5555 4.2540 4.5502 

        

Panel D: Work Hours Share     

Data 0.4184 0.4190 0.4189 0.4210 0.4184 0.4107 0.3897 

Model 0.4088 0.4048 0.4047 0.4036 0.4048 0.4020 0.4017 
        

        
 

S 

 

 

 

 



49 

 

Figure 1: Matching Results: Stockholder Model for Target Variable Combinations 

Notes: This figure compares for three target variable combinations the age-dependent empirical moments using 

SCF and PSID data (black line) vis-a-vis the moments implied by the structural estimation of the respective life-

cycle model (dashed line), which are the mean values from 100,000 simulated life cycles scenarios based on 

optimal feedback controls. Each Panel with three sub-figures represents one target combination of the structural 

estimation procedure as outlined in Table 3 Panel A. A black edging around a subfigure indicates that the 

respective variable is targeted during the structural estimation.  

(a) Target Variables: Cond. Stock Share 

(a.1) Conditional Stock Share (a.2) Fin. Wealth-to-Income Ratio (a.3) Work Hours Share 
     

 

 

 

 

 

     

(b) Target Variables: Cond. Stock Share, Work Hours Share 

(b.1) Conditional Stock Share (b.2) Fin. Wealth-to-Income Ratio (b.3) Work Hours Share 
     

 

 

 

 

 

     

(c) Target Variables: Cond. Stock Share, Fin. Wealth-to-Income Ratio, Work Hours Share 

(c.1) Conditional Stock Share 

 

(c.2) Fin. Wealth-to-Income Ratio 

 

(c.3) Work Hours Share 
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Figure 2: Matching Results: Stockholder Model for Preferences without Loss Framing  

(a) Conditional Stock Share 
 

(b) Financial Wealth-to-Income Ratio 

   

 

 

 

   

(c) Work Hours Share 
   

 

   

Notes: This figure compares the fit of the moments implied by the structural estimation of three life-cycle 

models with different preference specifications. The model moments are the ones implied by the parameter 

combination that gives the best fit in the structural estimation for the respective preference specifications. Those 

moments are compared to the empirical moments, estimated by using data from the SCF (1989–2019) and the 

PSID (1975–2017), and by utilizing the methodology of Deaton and Paxson (1994). The three preference 

specifications are loss framing (baseline model), Epstein-Zin preferences, and CRRA preferences. In each 

structural estimation the variables conditional stock share, financial wealth-to-income ratio, and work hours 

share are simultaneously targeted. The model moments are the mean values from 100,000 simulated life cycles 

based on optimal feedback controls. 

Ss 

                                   

         

 

   

   

   

   

   

   

 
 
  
  
 
  
 
 
  
  
 
 
  

                

               

                                   

         

 

 

 

 

 

 

 

 

 

 

  

  

 
  
 
 
 
  
  
 
 
 
  
 
  
 
  
 
 
 
 
 
  
 
  
 

                

               

                                   

         

 

   

   

   

   

   

   

   

   

   

 

 
 
 
 
  
  
 
 
  
 
  
 
 
  
 
 
  

                

               



51 

 

Figure 3: Effect of the Loss-Framing Parameter on Portfolio Choice Decisions 

(a) Stock Market Participation Rate 
 

(b) Conditional Stock Share 

   

 

 

 

   

Notes: This figure illustrates the stock market participation rate and conditional stock share by age for differing 

values of the loss-framing parameter Λ. For an equally spaced linear grid of 1,000 parameter values for Λ ranging 

from 0 to 0.05, the life-cycle model for the stockholder is solved. All other preference parameter values (𝛼, 𝛽, 

𝛾, 𝜓, and 𝑏) are set equal to those implied by the life-cycle model that gives the best fit in the structural 

estimation in which the conditional stock share, financial wealth-to-income ratio, and work hours share are 

simultaneously targeted (see Table 5, column 1).  

Ss 
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Figure 4: Matching Results for the Population Models 

(a) Stock Market Participation Rate 
 

(b) Conditional Stock Share 

   

 

 

 

   

(c) Financial Wealth-to-Income Ratio 
 

(d) Work Hours Share 

   

 

 

 

   

Notes: This figure compares the moments implied by the structural estimation of three life-cycle models with 

different model specifications for the entire population. Model moments are those implied by the parameter 

combination that gives the best fit in the structural estimation. Those moments are compared to the empirical 

moments, estimated from data from the SCF (1989–2019) and the PSID (1975–2017), and utilizing the 

methodology of Deaton and Paxson (1994). The models are the baseline preference specification (Loss 

Framing), the loss-framing model where the stock process follows a regime-switching process (Loss Framing 

+ Regime Switching), and the loss-framing model with participation costs (Loss Framing + Participation Costs). 

In each structural estimation, the stock market participation rate, conditional stock share, financial wealth-to-

income ratio for the population, and the work hours share are simultaneously targeted. The model moments are 

the mean values from 100,000 simulated life cycles based on optimal feedback controls. 
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Figure 5: Matching Results for the Heterogeneous Agent Model  

(a) Stock Market Participation Rate 
 

(b) Conditional Stock Share 

   

 

 

 

   

(c) Financial Wealth-to-Income Ratio 
 

(d) Work Hours Share 

   

 

 

 

   

Notes: This figure shows the for each of the target variable combinations the age-dependent empirical moments 

using SCF and PSID data (black line) vis-a-vis the moments implied by the structural estimation of the 

heterogeneous agent model (dashed line), which are the mean values from 100,000 simulated life cycles 

scenarios based on optimal feedback controls. The three-group model consists of 30% stockholders, 20% non-

stockholders, and 50% blended households, where for each group the parameters are structurally estimated for 

the respective group target variable combination. Subsequently all three groups are aggregated into one model. 

Those moments are compared to the empirical moments estimated by using data from the SCF (1989–2019) 

and the PSID (1975–2017), and by utilizing the methodology of Deaton and Paxson (1994).  
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Figure 6: Comparisons for Other Empirical Phenomena 

(a) Wealth Accumulation by Investor Type 
,   

(a.1) Stockholder  (a.2) Non-Stockholder 

   

 

 

 

   

(b) Portfolio Choice by Financial Wealth 
   

(b.1) Stock Market Participation Rate 
 (b.2) Conditional Stock Share 

   

 

 

 

   

Notes: This figure compares the representative agent model with stock market participation costs (Model Rep.) 

with the heterogeneous agent model (Model Het.) for the financial wealth-to-income ratio for stock- and non-

stockholders and the stock market participation and the conditional stock share by deciles of financial wealth 

measured by the dollar allocation to both stocks and bonds. The three-group model consists of 30% 

stockholders, 20% non-stockholders, and 50% blended households. The data are from the SCF waves from 1989 

to 2019. Only households age 25 to 80 are considered. Wealth deciles for the data are calculated for each wave. 

The model moments are the mean values from 100,000 simulated life cycles based on optimal feedback controls. 
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Online Appendix 

Appendix A: Relation Loss Framing and Narrow Framing with Loss Aversion 

We want to show that the loss framing part with one preference parameter Λ used in our 

preference specification (1) is equivalent to the two-parameter (𝑏0, 𝜆) approach of Barberis and 

Huang (2009). The following equation represents the two approaches: 

𝑝𝑡Λ𝔼𝑡[min(𝐺𝑡+1, 0)]  = 𝑝𝑡𝑏0𝔼𝑡[max (𝐺𝑡+1, 0) + 𝜆min (𝐺𝑡+1, 0)]. (A.1) 

On the left hand side, the parameter Λ controls the disutility from expected shortfalls on stock 

investments below a target return. On the right hand side , 𝑏0 > 0 controls the strength of the 

narrow framing part and 𝜆 > 0 is the loss aversion parameter used in the piecewise-linear utility 

specification in Barberis and Huang 2009, page 1559).27 Furthermore, 𝑝𝑡 denotes the one-year 

survival probability, and 𝐺𝑡+1 are stock market gains or  losses relative to the benchmark return 

𝑅𝑏: 

𝐺𝑡+1 = 𝑆𝑡(𝑅𝑡+1 − 𝑅𝑏). (A.2) 

Substituting (A.2) in (A.1) and dividing both sides of equation (A.1) by the non-random 

variables 𝑆𝑡 and 𝑝𝑡, and isolating the loss-framing parameter Λ, gives the final general 

expression of the loss-framing parameter used in (1) in terms of the parameters (𝜆, 𝑏0) used in 

Barberis and Huang (2009): 

Λ = 𝑏0 (
𝔼𝑡[max (𝑅𝑡+1 − 𝑅𝑏 , 0)]

𝔼𝑡[min (𝑅𝑡+1 − 𝑅𝑏 , 0)]
+ 𝜆) (A.3) 

Thus, the loss-framing parameter Λ is equal to the narrow framing parameter 𝑏0 times a ratio 

of two partial expectations plus the loss aversion parameter 𝜆. This expression can be rewritten 

as follows (𝑅 ≔ 𝑅𝑡+1): 

Λ = 𝑏0 (−
∫ (𝑅 − 𝑅𝑏)𝑓(𝑅)𝑑𝑅
∞

𝑅𝑏

∫ (𝑅𝑏 − 𝑅)𝑓(𝑅)𝑑𝑅
𝑅𝑏
−∞

+ 𝜆) = 𝑏0 (−
𝑈𝑃𝑀1(𝑅, 𝑅𝑏)

𝐿𝑃𝑀1(𝑅, 𝑅𝑏)
+ 𝜆). (A.4) 

The second expression illustrates that this ratio can be traced back to the common downside 

risk measure 𝐿𝑃𝑀1(𝑅𝑏 , 𝑅) = 𝐸[max(𝑅𝑏 − 𝑅, 0)] = 𝔼[𝑅𝑏 − 𝑅|𝑅 ≥ 𝑅𝑏]ℙ(𝑅 ≥ 𝑅𝑏) and the 

upside return measure 𝑈𝑃𝑀1(𝑅𝑏 , 𝑅) = 𝐸[max(𝑅 − 𝑅𝑏 , 0)] =  𝔼[𝑅 − 𝑅𝑏|𝑅 < 𝑅𝑏]ℙ(𝑅 < 𝑅𝑏) 

already known in the literature (Bawa and Lindenberg 1977; Fishburn 1977; Holthausen 1981). 

To ensure that Λ > 0 and thus there is actual loss-framing requires that 𝜆𝐿𝑃𝑀1(𝑅𝑏 , 𝑅) >

𝑈𝑃𝑀1(𝑅𝑏 , 𝑅). In other words, expected losses below the benchmark return multiplied by the 

degree of loss aversion must exceed expected gains above the benchmark.  

Assuming a log-normal distribution of the gross stock return 𝑅~𝐿𝑁(𝜇, 𝜎2) with 

parameters 𝜇 and 𝜎2 and using Winkler et al. 1972 to calculate the partial moments expression, 

(A.3) has the following closed-form solution:  

 
27 As pointed out by Barberis and Huang (2009), the piecewise-linear specification of the narrow framing part is 

closely related to Kahneman and Tversky's (1979) prospect theory and ensures that the utility function is concave 

and homothetic. 
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. (A.5) 

Here Φ denotes the cumulative distribution function of the standard normal distribution. Thus 

one easily derive a loss-framing parameter value from the other parameterizations. Table A.1 

gives four calibration examples for the loss-framing parameter which further illustrates the 

ceteris paribus effects of the relevant input parameters for deriving the loss-framing parameter.  

 

Table A.1: Example Calibrations for the Loss-Framing Parameter  

This table presents calibration examples for the loss-framing parameter Λ. The input parameters are the narrow 

framing parameter 𝑏0, the loss aversion parameter 𝜆, the benchmark return 𝑅𝑏, and the stock market process 

parameter values 𝜇 and 𝜎 for log-normally distributed stock returns. 

       
       

Input Parameters  Output 

𝑏0 𝜆 𝑅𝑏 𝜇 𝜎  Λ 

0.05 3.5 1.0077 0.0637 0.1564  0.0248 

0.10 3.5 1.0077 0.0637 0.1564  0.0496 

0.05 4.0 1.0077 0.0637 0.1564  0.0498 

0.05 3.5 1.0000 0.0637 0.1564  0.0048 
       

       
 

 

Appendix B: Estimation Methods and Results First-Stage Parameters  

Appendix B.1: Capital Market 

Since the stock index which serves as proxy for the risky asset is easily investable for retail 

investors, the S&P 500 total return index is chosen (data obtained from Datastream). The 

sample period is February 1970 to July 2020, since from then onwards, a S&P 500 total return 

index is available, yielding a sample of 606 monthly observations. As a real risk-free rate we 

use the 3-Month T-bill rate on the secondary market (data obtained from the FRED database). 

The sample period for the time series of the risk-free rate also spans February 1970 to July 

2020. As an inflation proxy we use the monthly CPI for all urban customers with base month 

July 2020. We estimate the parameters of the stock process by regressing the real monthly log-

returns on a constant: 

log(𝑅𝜏) = 𝜇
𝜏 + 𝜂𝜏, (B.1) 

where the subscript 𝜏 denotes the month and the superscript 𝜏 indicates that the parameter is 

defined in monthly terms. Estimation results for all return parameters are depicted in B.1. The 

resulting annualized expected log-return amounts to 𝜇 = 0.0637 with an annualized 

volatility 𝜎𝜂 =  0.1564, which together with the annualized gross risk-free rate 𝑅𝑓 =  1.0077 
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results in an expected gross stock return 𝔼[𝑅𝑡
𝑔𝑟𝑜𝑠𝑠

] = 1.0789 and a standard deviation 

Std(𝑅𝑡
𝑔𝑟𝑜𝑠𝑠

) = 0.1688.28 

 

Table B.1: Estimation Results Asset Return Parameters 

This table presents our estimation results for the capital market parameters. The real gross risk-free rate 𝑅𝑓 is 

the mean of the 3-Month T-bill rate on the secondary market. The stock return parameters (𝜇, 𝜎𝜂) are obtained 

by regressing the logarithm of the monthly real return of the S&P 500 total return index on a constant, estimated 

using standard maximum likelihood techniques. The sample period for each return parameter is February 1970 

to July 2020, while the monthly CPI for all urban customers with base month July 2020 serves as the inflation 

proxy. The superscript 𝜏 on each parameter indicates that it is a monthly estimate. One, two, and three asterisks 

indicate that the coefficient is statistically significant at the 10%, 5%, and 1% significance level, respectively. 

Standard errors for each regression coefficient are displayed in parentheses. 

  
  

  

𝑅𝑓
𝜏 − 1 0.0006 

𝜇𝜏 0.0053*** 

 (0.0018) 

𝜎𝜂
𝜏 0.0452*** 

 (0.0001) 

Observations 606 
  

  
 

 

Appendix B.2: Labor Income  

We calibrate the wage rate process using the Panel Study of Income Dynamics (PSID) 1975-

2017. The wage rate of each household is defined as the hourly wage directly reported or an 

inferred hourly wage rate. The inferred wage rate is obtained by dividing reported annual labor 

income by reported average work hours per week times 52 weeks; annual labor income is either 

the weekly salary times the number of weeks worked during the year or the hourly salary times 

2,000 hours. Wage rate values are deflated using the CPI for all urban customers with base year 

2016.29 The data are further trimmed by dropping extreme observations below $5 per hour or 

above the 99th percentile of each wave, and by dropping observations of unemployed 

households. Further, only ages 25-66 are considered.  

To determine the deterministic component of the wage rate process, we regress the 

logarithm of the wage rate on a constant, a cubic age polynomial, dummies for employment 

status, and a set of wave dummies. The fixed effects regression function is: 

𝑤𝑖,𝑡 = 𝛽0 + 𝛽1
𝑎𝑔𝑒

100
+ 𝛽2 (

𝑎𝑔𝑒

100
)
2

+ 𝛽3 (
𝑎𝑔𝑒

100
)
3

+ 𝛽4𝐸𝑆𝑖,𝑡 + 𝛽𝑡𝐷𝑡 + 𝜖𝑡, (B.2) 

 
28 This estimate for the mean stock return is substantially higher while the estimate of the risk-free rate is lower 

than typically used value in the life-cycle literature. However, both are in line with other empirical evidence (Pagel 

2018; Jorda et al. 2019). It is debatable whether to adjust expected returns by unexpected capital gains and losses, 

which would result in substantially lower stock returns as outlined by Fama and French (2002). 
29 The base year is 2016 and not 2017, as in each PSID wave, the questions asked to the panel participants refer to 

the prior year.  
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where 𝑤𝑖,𝑡 is the log-wage rate of household 𝑖 at time 𝑡, 𝑎𝑔𝑒 is the age of the household in 

years, 𝐸𝑆𝑖,𝑡 is the employment status of the household 𝑖 at time 𝑡, and 𝐷𝑡 are wave dummies to 

control for year-specific shocks. The household’s employment status depends on its weekly 

work hours and consists of one of three categories: part-time worker (below 30 hours), full-

time worker (between 30 and 40 hours) and over-time worker (above 40 hours). Estimation 

results are depicted in Panel A of Table B.2. Resulting wage rates illustrate the typical hump-

shaped form of the wage rate over the life cycle. 

We estimate the variances of the permanent and transitory components of the wage process 

using the decomposition procedure in Carroll and Samwick (1997) and Cocco et al. (2005), by 

regressing the variance of each household’s stochastic component of the log wage on the yearly 

difference between observations and a constant. Here we make use of the maximum number of 

yearly log wage differences resulting in differences from one to 42 years. Results are depicted 

in Panel B of Table B.2. The variance for the permanent wage shock is 0.0080 and 0.0606 for 

the transitory wage shock, both in line with other estimates in the literature.  

To estimate the contemporaneous correlation of the logarithm of the aggregate component 

of stochastic permanent wage log(𝜉𝑡) with the innovation of the logarithm of the stock 

return 𝜂𝑡, we follow the procedure in Campbell et al. (2001) and Cocco et al. (2005). Thus we 

extract the correlation coefficient from the regression coefficient of regressing the cross-

sectional mean of the household one-year log wage differences of each wave against the 

demeaned stock return of the same year without a constant. We also follow Angerer and Lam 

(2009) by assuming that the first differences in log wages in two adjacent years are equal when 

the survey is done biennially. Results appear in Panel C of Table B.2; here the regression 

coefficient is strikingly low and statistically insignificant, resulting in insignificant correlation 

coefficients. Consequently, the hypothesis of zero correlation cannot be rejected, which is why 

we assume 𝜌log(𝜉),𝜂 = 0.30 

 
30 This result also holds for lags in the relation between the two innovations. 
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Table B.2: Estimation Results for the Wage Rate Process 

This table presents estimation results for the wage rate process parameters. Panel A displays the results of fixed-

effects regressions of the logarithm of the real hourly wage rate on a set of age dummies, dummies for working 

part-time (under 20 hours per week) or over-time (over 40 hours a week), and wave dummies (not reported 

here). The data are taken from the PSID (1975-2017). The wage per hour is defined the sum of household labor 

income divided by the average work hours that year. The sample is restricted to employed respondents aged 25-

66, and observations are excluded if hourly wages less than $5 or greater than the 99th percentile of each wave. 

Panel B displays the results of the regression for the variance decomposition of the stochastic component of the 

wage process. The estimation procedure for the error structure follows Carroll and Samwick (1997) by 

regressing the variance of each household's stochastic component of log-wage on the yearly difference between 

observations and a constant. Estimation results make use of the maximum number of available wage differences 

of up to 42 years. Panel C shows the results of the estimation of the correlation coefficient between the logarithm 

of the permanent aggregate wage shock and the stock return shock. The estimation procedure follows Campbell 

et al. (2001) by extracting the correlation coefficient from regressing the cross-sectional mean of the household 

one-year log wage differences of each wave against the demeaned stock return of the same year without a 

constant. All pecuniary values are deflated using the CPI for all urban customers with base year 2016. One, two, 

and three asterisks indicate that the coefficient is statistically significant at the 10%, 5%, and 1% significance 

level, respectively. Robust standard errors for each regression coefficient are displayed in parentheses. 

  
  

  

Panel A: Deterministic Profile                                                                 

Constant 1.6428*** 

 (0.0318) 

Age/100 6.4680*** 

 (0.2380) 

(Age/100)² -9.2595*** 

 (0.5813) 

(Age/100)³ 3.3715*** 

 (0.4574) 

Discount Part-Time -0.1979*** 

 (0.0024) 

Premium Over-Time 0.2126*** 

 (0.0010) 

Observations 1,317,891 

  

  

Panel B: Shocks  

Permanent (𝜎𝜗
2) 0.0080*** 

 (0.0000) 

Transitory (𝜎𝜑
2) 0.0606*** 

 (0.0002) 

Observations 1,702,532 

  

Panel C: Correlation Labor Income and Stock Return Shocks 

Regression Coefficient 0.0130 

 (0.0156) 

𝜌log(𝜉),𝜂 0.1291 

Observations 42 
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Appendix B.3: Retirement Income  

We calibrate the parameters of retirement income using PSID data. We assume that gross 

retirement income is the household’s reported total Social Security benefits received for those 

years when it stated it has been retired, using waves from 1986-2017. We restrict the sample to 

those age 60+. All values are deflated using the CPI for all urban customers with base year 

2016.  

The benefit replacement ratio for each household is defined as the ratio of the reported 

Social Security benefits over all available time periods to the assumed deterministic average 

labor income from age 25-66 given by our wage rate estimation assuming 𝑁̅ = 0.4, and Υ =

5200, which gives on average 40 weekly work hours over the household’s lifetime. The 

estimate of the economy-wide ratio is the mean across all individual ratios. The resulting benefit 

replacement ratio is displayed in Panel A of Table B.3 and amounts to 0.5838. 

 

Table B.3: Estimation Results: Retirement Income Process 

This table presents the estimation results of the retirement income process parameters. The data are taken from 

the 1986 to 2017 waves of the Panel Study of Income Dynamics (PSID). Panel A displays the results for the 

benefit replacement rate, defined as the average across all households of the fraction of each household’s 

average reported social security benefits divided by the assumed deterministic average labor income from age 

20-66 for an average 40 weekly work hours over the household’s lifetime. Panel B shows results for the 

estimates of the average proportion of out-of-medical expenditures, defined as the fraction of the sum of doctor 

expenditures, nursing home and hospital bills, and prescription expenditure, divided by the same year’s gross 

retirement income, from the PSID (waves 1999 to 2017). Panel C shows the results of the regression for the 

variance decomposition of the stochastic component of gross retirement income process net of medical 

expenditures. The estimation procedure for the error structure follows Carroll and Samwick (1997). All 

pecuniary values are deflated using the CPI for all urban customers with base year 2016. One, two, and three 

asterisks indicate that the coefficient is statistically significant at the 10%, 5%, and 1% significance level, 

respectively. Robust standard errors for each regression coefficient are displayed in parentheses. 

  
  

  

Panel A: Benefit Replacement Ratio 

𝜁 0.5838 

Observations 11,650 

  

Panel B: Proportion of Out-of-Pocket Medical Expenditures 

𝜆 0.1175 

Observations 18,435 

  

Panel C: Shocks 

Transitory (𝜎𝜀) 0.0903*** 

 (0.0023) 

Observations 11,430 
  

  
 

  

The average portion of retirement income the household must spend on medical expenses 

𝜆 is estimated by dividing the reported out-of-pocket medical expenditures from the PSID, 

composed of the sum of doctor expenditures, nursing home and hospital bills, and prescription 

expenditures divided by that year’s gross retirement income. The mean across all observations 
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is then our estimate. The data come from the PSID (1999-2017), since for these waves the 

reported medical costs have a consistent definition. We trim the data for high ratios above the 

99th percentile. The resulting value is displayed in Panel B of Table B.3 and equals 0.1175. 

We estimate the variances of the stochastic component of retirement income net of medical 

expenditures using the same decomposition procedure as employed in the wage rate process, 

only that instead of the wage rate, gross retirement income adjusted for out-of-pocket medical 

expenditures is used. We restrict the sample to households age 60-90. The result is depicted in 

Panel C of Table B.3. We set the permanent shock to zero and the transitory shock amounts to 

0.0903. 

Appendix B.4: Housing Costs 

Following Gomes and Michaelides (2005) and Love (2010), we define the individual housing 

costs for each household 𝑖 in year 𝑡 as the ratio of annual mortgage payments and rental costs 

𝐻 to gross labor or retirement income:31  

ℎ𝑖,𝑡 ≡
𝐻𝑖,𝑡

𝑌𝑖,𝑡
𝑔𝑟𝑜𝑠𝑠. (B.3) 

The data are PSID (1999-2017) given the consistent definition of housing expenditures across 

those waves. Annual gross labor income and gross retirement income are defined in the same 

way as before. We restrict the sample to households age 25-85.  We further eliminate 

observations with a ratio below zero or above one. To obtain housing costs, we regress the 

individual housing expenditure ratio on a cubic age polynomial and a set of wave dummies. 

The fixed-effects regression is defined as follows: 

ℎ𝑖,𝑡 = 𝛽0 + 𝛽1
𝑎𝑔𝑒𝑖,𝑡
100

+ 𝛽2 (
𝑎𝑔𝑒𝑖,𝑡
100

)
2

+ 𝛽3 (
𝑎𝑔𝑒𝑖,𝑡
100

)
3

+ 𝛽𝑡𝐷𝑡 + 𝜖𝑡. (B.4) 

We further winsorize the resulting housing costs function ℎ(𝑡) at zero for negative values of 

the fitted polynomial, i.e.: 

ℎ(𝑡) = max (𝛽0 + 𝛽1
𝑎𝑔𝑒𝑡
100

+ 𝛽2 (
𝑎𝑔𝑒𝑡
100

)
2

+ 𝛽3 (
𝑎𝑔𝑒𝑡
100

)
3

, 0). (B.5) 

Estimation results are depicted in Table B.4. The resulting function is decreasing in age and 

winsorization of the housing costs is required for households age 95 and above.  

 

 
31 In fact, only a few households pay mortgages and rent simultaneously.  
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Table B.4: Estimation Results for Housing Costs 

This table presents estimation results for housing costs. The data are from the Panel Study of Income Dynamics 

(PSID) from 1999 until 2017. For each household and in each wave, we compute the ratio of annual mortgage 

payments plus rent payments relative to annual gross labor income or gross retirement income, and regress this 

ratio against a constant, a cubic polynomial of age, and wave dummies (not reported). We eliminate all 

observations with age below 25 and over 85, as well as ratios below zero and above one. One, two, and three 

asterisks indicate that the coefficient is statistically significant at the 10%, 5%, and 1% significance level, 

respectively. Robust standard errors for each regression coefficient are displayed in parentheses. 

  
  

  

Constant 0.5212*** 

 (0.0148) 

Age/100 -1.5218*** 

 (0.0971) 

(Age/100)² 2.6889*** 

 (0.2014) 

(Age/100)³ -1.7591*** 

 (0.1320) 

Observations 233,948 
  

  
 

 

Appendix B.5: Starting Financial Wealth-to-Income Ratios 

Initial financial wealth is defined as a multiple of the household’s first-year gross income; the 

distribution fits the observed financial wealth-to-income ratio of households age 18 to 25 in the 

Survey of Consumer Finances (SCF) for stockholders, non-stockholders, and the overall 

population. The respective financial wealth-to-income ratios are defined as the sum of the 

reported stock and bond allocations divided by gross labor income. This distribution is fitted to 

a generalized Pareto distribution using maximum likelihood estimation. We restrict the density 

to positive values only and further winsorize the right tail of each distribution to mitigate the 

effect of extremely high ratios on the mean. Moreover, we truncate the fitted distribution in 

order to ensure that the resulting mean financial wealth-to-income ratio is below the ratio of the 

first age group in the structural estimation. Resulting parameter values are reported in Table 

B.5, where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝜉 is the shape parameter 

of the generalized Pareto distribution. 
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Table B.5: Estimation Results: Starting Financial Wealth-to-Income Ratios 

This table presents estimation results for the starting financial wealth-to-income ratios (in simulations) for 

stockholders, non-stockholders, and the general population. Data are from the SCF on households age 18-25 

having financial assets and positive labor income. The financial wealth-to-income ratio is defined as the sum of 

the reported stock and bond allocation divided by gross labor income. The resulting ratios are pooled and fitted 

to a generalized Pareto distribution using maximum likelihood estimation. 𝜇 denotes the location parameter, 𝜎 

denotes the scale parameter, and 𝜉 denotes the shape parameter of the generalized Pareto distribution. 

    
    

 
Stockholders 

Non-

Stockholders 
Population 

𝜇 0.0000 0.0000 0.0000 

𝜎 0.3707 0.0751 0.1168 

𝜉 0.7115 1.0754 1.0618 

Observations 2,960 7,742 10,702 
    

    
 

 

Appendix B.6: Regime-Switching Stock Process 

To estimate stock return parameters needed for the model, where the stock returns follows a 

two-dimensional Markovian regime-switching process, we use the yearly S&P 500 total return 

index from 1929 to 2020 as a proxy for the risky asset. The returns are deflated using the annual 

CPI for all urban customers with base year 2020. The parameters of the regime-switching model 

are driven by the stochastic state variable 𝑠𝜏 ∈ {1,2}, are estimated using the following model: 

log(𝑅𝑡) = 𝜇s𝑡 + 𝜖𝑡,  with 𝜖𝑡~𝑁(0, 𝜎𝑠𝑡
2 ) and s𝑡 ∈ {1, 2}, (B.6) 

where the subscript 𝑡 denotes the year of the observation in the sample period. The parameters 

are estimated using the expectation-maximization (EM) algorithm by Dempster et al. (1977) 

and Hamilton (1990). The standard errors are obtained by bootstrapping the data using 1,000 

resamples. The estimation results for all return parameters are depicted in Table B.6. The 

expected annual log-returns amount to -0.1754 and 0.1412 for the first and second regime, 

respectively, with corresponding volatilities of 0.2116 and 0.1313. Thus, the first regime is a 

bear market with negative returns and heightened volatility levels, while the second regime is 

a bull market with positive returns and modest volatility. The resulting transition probability 

matrix is as follows: 

𝐏 = [
0.4532 0.5468
0.0940 0.9060

], (B.7) 

while the invariant distribution vector is equal to: 

𝛑 = [
0.1467
0.8533

]. (B.8) 

Consequently, the Markov chain governing the regime-switching behavior of the stock process 

is further ergodic. 

During the simulation of the life-cycle model, the starting financial regime is determined 

by the invariant distribution vector 𝛑 and is randomly assigned to the households, whereas the 

regime sequence for each household is governed by the two-dimensional Markov chain implied 

by the transition probability matrix 𝐏. 
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Table B.6: Estimation Results: Regime-Switching Stock Process 

This table presents estimation results for the regime-switching stock process parameters. The times series used 

is the logarithm of the annual real return on the S&P 500 total return index for the sample period 1929-2020, 

where the annual CPI for all urban customers with base year 2020 serves as inflation proxy. The subscript under 

each parameter denotes the number of the respective regime. The parameters are estimated using the EM 

algorithm. One, two, and three asterisks indicate that the coefficient is statistically significant at the 10%, 5%, 

and 1% significance level, respectively. Standard errors for each regression coefficient are displayed in 

parentheses and are obtained by bootstrapping the sample data using 1,000 resamples. 

  
  

  

𝜇1 -0.1754* 

 (0.0906) 

𝜇2 0.1412*** 

 (0.0396) 

𝜎1 0.2116*** 

 (0.0286) 

𝜎2 0.1313*** 

 (0.0339) 

Observations 92 
  

  
 

 

Appendix B.7: Scaling Factor for Stock Market Participation Costs 

The age-dependent scaling factor 𝐹𝑡 is determined using the American Time Use Survey 

(ATUS) microdata from the Bureau of Labor Statistics (2003-2019). Participation costs are 

proxied by the household’s reported average time spent for “Financial Management” (variable 

code: 020901), where activities related to the acquisition of stock market information are a 

subset of the reported activities in that category. We only consider households age 25-80 and 

take the mean of the reported time for each age. The resulting age-dependent times are fitted 

using a first-order polynomial function that gives the best fit for the data in a least-squares 

sense. For each age, the resulting function is divided by the function value for a household age 

66, which is the last age before retirement at time period 𝐾. This results in the following scaling 

factor: 

𝐹𝑡 = 0.0152(𝑡 + 24). (B.9) 

 

Appendix C: Empirical Targets 

We use two datasets to generate the empirical targets for the structural estimation. All 

portfolio and wealth-related target variables are obtained from Survey of Consumer Finances 

(SCF), a triennial survey on the financial assets of U.S. households. For the work hours we use 

the Panel Study of Income Dynamics (PSID), which we also use to estimate the labor and 

retirement income-related first-stage parameters. 

 For the SCF, we use the waves from 1989 to 2019 given the consistent variable definitions 

across those waves. We scale the individual weights within each wave such that the cumulative 
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weights are the same across waves and further deflate all variables to 2019-dollar values. We 

delete observations with no financial assets and observations with zero or negative labor 

income. For the PSID, we use the same sample for which we estimate the wage process (1975 

-2017). The observations included are those of employed individuals with an hourly wage rate 

above $5 per hour or below the 99th percentile of each wave. 

Furthermore, we group each observation of each variable in age buckets. This is motivated 

by greater data availability compared to single-age groupings; it further has the advantage of 

some data smoothing. To give each targeted variable the same weight, we use an equal number 

of age groups, namely seven for each variable. For all variables, the starting age is 25, while 

the ending age is 80 for the SCF-based variables and 66 for the PSID-based variable.  

For the SCF, we rely on the following variable definitions. The allocation in stocks and 

financial wealth are defined as in the public summary of the SCF data. Consequently, the 

allocation to stocks includes direct stockholdings, investments in stock mutual funds, and the 

stock allocation of IRAs or Keogh plans, thrift-type retirement accounts, savings account, and 

other managed assets with equity interest. Financial wealth is the sum of transaction accounts, 

certificates of deposit, pooled investment funds, savings bonds, directly held stocks, directly 

held bonds, cash value of whole life insurances, annuities, trusts, quasi-liquid retirement 

accounts, and other miscellaneous financial assets. Following Gomes and Michaelides (2005) 

and Peijnenburg (2018), annual labor or retirement income is defined as the sum of the income 

from wages, salaries, Social Security, and other pensions in order to mimic the labor income 

definition of the PSID as closely as possible. Work hours are reported weekly work hours in 

the PSID.  

The definitions of the targeted empirical moments are then as follows. Stock market 

participation is equal to one if the total dollar stock allocation is above zero, zero else. The stock 

share conditional on stock market participation is the fraction of total stock allocation to total 

financial wealth given a non-zero allocation to stocks. The financial wealth-to-income ratio is 

defined as the ratio of total financial wealth to annual labor or retirement income. The financial 

wealth-to-income ratio for stockholders is defined as the ratio given a non-zero allocation to 

stocks, while the financial wealth-to-income ratio for non-stockholders is defined as the ratio 

given a zero allocation to stocks. We also trim the data by deleting very high observations with 

financial wealth-to-income ratios above 100 for a more robust estimate. The work hours share 

is defined as the average weekly work hours reported in PSID divided by our assumed 100 

weekly waking hours.  

Appendix D: SMM Estimation Methodology 

Appendix D.1: Goodness-of-Fit 

The moments of the simulated data are computed analogously to those from the data. 

Consequently, household 𝑖 is defined as participating in the stock market at time period 𝑡 if its 

stock allocation is above zero: 

𝑦𝑖,𝑡
𝑠𝑡𝑜𝑐𝑘 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 = 𝕝{𝑆𝑖,𝑡>0}. 

(D.1) 
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The stock share conditional on participation is defined as the ratio of the dollar allocation to 

stocks over total financial wealth, conditional on a non-zero allocation to stocks: 

𝑦𝑖,𝑡
𝑐𝑜𝑛𝑑.  𝑠𝑡𝑜𝑐𝑘 𝑠ℎ𝑎𝑟𝑒 =

𝑆𝑖,𝑡
𝑊𝑖,𝑡 

|
𝑆𝑖,𝑡>0

. (D.2) 

The financial wealth-to-income ratio for a stockholder is defined as the ratio of financial wealth 

to gross labor or retirement income, conditional on a non-zero allocation to stocks: 

𝑦𝑖,𝑡
𝑓𝑖𝑛−𝑖𝑛𝑐 𝑟𝑎𝑡𝑖𝑜 𝑠𝑡𝑜𝑐𝑘ℎ𝑜𝑙𝑑𝑒𝑟

=
𝑊𝑖,𝑡

𝑌𝑖,𝑡
𝑔𝑟𝑜𝑠𝑠

 
|

𝑆𝑖,𝑡>0

. (D.3) 

The financial wealth-to-income ratio for non-stockholders is defined as the ratio of financial 

wealth to gross labor or retirement income, conditional on a zero allocation to stocks: 

𝑦𝑖,𝑡
 𝑓𝑖𝑛−𝑖𝑛𝑐 𝑟𝑎𝑡𝑖𝑜 𝑛𝑜𝑛−𝑠𝑡𝑜𝑐𝑘ℎ𝑜𝑙𝑑𝑒𝑟

=
𝑊𝑖,𝑡

𝑌𝑖,𝑡
𝑔𝑟𝑜𝑠𝑠

 
|

𝑆𝑖,𝑡=0

. (D.4) 

The financial wealth-to-income ratio for the population is defined as the ratio of financial wealth 

to gross labor or retirement income, unconditional on the asset allocation: 

𝑦𝑖,𝑡
 𝑓𝑖𝑛−𝑖𝑛𝑐 𝑟𝑎𝑡𝑖𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

=
𝑊𝑖,𝑡

𝑌𝑖,𝑡
𝑔𝑟𝑜𝑠𝑠

 
. (D.5) 

The work hours share is defined as the share of waking time devoted to work: 

𝑦𝑖,𝑡
𝑤𝑜𝑟𝑘 𝑠ℎ𝑎𝑟𝑒 = 𝑁𝑖,𝑡. (D.6) 

The model moment for each target 𝑗 of age group 𝑎 is defined as the mean of the variable 

𝑦 for each time period 𝑡 for age group 𝑎, which has an age width of Δ𝜏𝑗 and a mean across the 

total simulated population: 

𝑚(𝑦𝑎
𝑗,𝑚𝑜𝑑𝑒𝑙

) =
1

𝑁Δτj
∑ ∑ 𝑦𝑖,𝑡

𝑗,𝑚𝑜𝑑𝑒𝑙
,

𝜏𝑎+Δτj

𝑡=𝜏𝑎

𝑁

𝑖=1

 (D.7) 

where 𝑁 is the number of simulated life-cycle scenarios of the household and 𝜏𝑎 is the lowest 

age in age group 𝑎. We define the vector of moments 𝒎 for each target variable 𝑗 as follows: 

𝒎(𝑦
𝑗,𝑚𝑜𝑑𝑒𝑙

) = [
𝑚(𝑦1

𝑗,𝑚𝑜𝑑𝑒𝑙
)

⋮

𝑚(𝑦𝑛
𝑗,𝑚𝑜𝑑𝑒𝑙

)

], (D.8) 

where 𝑛 denotes the number of age groups. We further concatenate the moment vector across 

the different target variables to form a final moment vector 𝒎(𝒚𝑚𝑜𝑑𝑒𝑙), whose length depends 

on the exact combination of targeted variables.  

The parameter combination vector of the continuous model parameters is defined as 

follows: 

𝜽 ≡ [𝛼 𝛽 𝛾 𝜓 𝑏 Λ χ]. (D.9) 

The length of the parameter vector depends on the model specification 𝑖, i.e.: 32 

 
32 For the rest of the section, we refrain from indicating that the parameter vector is model-dependent. 
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𝜽𝑖 ⊆ 𝜽. (D.10) 

The SMM estimator is then the preference parameter combination that minimizes the 

distance function, which is defined as the squared percentage deviation of the difference in the 

vector of simulated model moments from the targeted data moments: 

𝜽𝑆𝑀𝑀 = argmin
𝜽       

 [
𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽) −𝒎(𝒚𝑑𝑎𝑡𝑎)

𝒎(𝒚𝑑𝑎𝑡𝑎)
]

⊤

𝑾 [
𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽) −𝒎(𝒚𝑑𝑎𝑡𝑎)

𝒎(𝒚𝑑𝑎𝑡𝑎)
] . (D.11) 

We use the percentage deviation of the moments given the different scale of the target variables. 

Furthermore, the weighting matrix 𝑾 is equal to the identity matrix 𝑰 as we combine moments 

from two data sets, namely the SCF and the PSID and thus we cannot use the typical modeling 

approaches, such as using inverse of the variance-covariance matrix of the actual data moments 

(Gourieroux et al. 1993) or bootstrapping the actual data (Hall and Horowitz 1996). This results 

in a consistent but inefficient estimate of the parameters. 

Appendix D.2: Standard Errors 

To overcome the efficiency problem that the use of the identity matrix as weighting matrix 

poses, we calculate the standard errors as in Fagereng et al. (2017) by bootstrapping the 

simulated data. We first simulate 500,000 paths of the life-cycle model for the given optimal 

parameter combination 𝜽𝑆𝑀𝑀 and subsequently draw 𝐵 = 1,000 independent samples with 

replacement of size 𝑁 = 100,000 households, which corresponds to the sample size of the 

simulation used to obtain the SMM estimate. We then compute the moments from each sample 

and use the 𝐵 realizations of these moments to calculate an estimate of their variance-covariance 

matrix 𝑾𝑆𝑀𝑀:  

𝑾𝑆𝑀𝑀(𝜽𝑆𝑀𝑀) =
1

𝐵
∑[𝒎𝑏(𝒚

𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀) −
1

𝐵
∑𝒎𝑏(𝒚

𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀)

𝐵

𝑏=1

]

𝐵

𝑏=1

 

                                                      [𝒎𝑏(𝒚
𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀) −

1

𝐵
∑𝒎𝑏(𝒚

𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀)

𝐵

𝑏=1

]

⊤

, 

(D.12) 

where 𝒎𝑏(𝒚
𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀) is the moment vector implied by the 𝑏-th resample of the simulation 

for the life-cycle model with preference parameter vector 𝜽𝑆𝑀𝑀. The asymptotic covariance 

matrix is then given by the following expression: 

𝑸(𝑾𝑆𝑀𝑀) = (1 +
1

𝐵
) [
𝜕𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀)

𝜕𝜽𝑆𝑀𝑀

⊤

(𝑾𝑆𝑀𝑀)
−1
𝜕𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽𝑆𝑀𝑀)

𝜕𝜽𝑆𝑀𝑀
]

−1

, (D.13) 

where the derivatives of the moments with respect to the parameters are approximated using a 

central differences scheme. The incremental increase and decrease of the 𝑖-th element of 

parameter vector 𝜽 is 𝛿𝑖 = max(|𝜽𝑖|, 1)√𝜀
3

, where 𝜀 = 2.2204e − 16 is the machine epsilon 

of our programming language MATLAB. The standard errors are then obtained by taking the 

square root of the diagonal elements of matrix 𝑸, i.e.: 

𝑺𝑬𝜽𝑆𝑀𝑀 = √tr(𝑸). (D.14) 
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Appendix D.3: Determination of Estimates 

The overall objective of the structural estimation is to find the parameter combination vector 𝜽 

that solves the subsequent minimization problem: 

min
𝜽∈Ω

𝑓(𝜽)   with Ω = {𝜽 ∈ ℝ𝑘: 𝜽𝑙 ≤ 𝜽 ≤ 𝜽𝑢}, (D.15) 

where the objective function is equivalent to the criterion function of the SMM estimation and 

is defined as follows: 

𝑓(𝜽) = [
𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽)−𝒎(𝒚𝑑𝑎𝑡𝑎)

𝒎(𝒚𝑑𝑎𝑡𝑎)
]
⊤

𝑰 [
𝒎(𝒚𝑚𝑜𝑑𝑒𝑙|𝜽)−𝒎(𝒚𝑑𝑎𝑡𝑎)

𝒎(𝒚𝑑𝑎𝑡𝑎)
], (D.16) 

and 𝑘 is the dimension of parameter combination vector 𝜽 and 𝜽𝑙 and 𝜽𝑢 denote the lower and 

upper parameter vectors, respectively. 

The constraint set Ω for all parameters is constructed using a structural approach. The 

starting points for the upper and the lower bounds are values previously used in the life-cycle 

literature. These two values are linearly interpolated on an equidistant 10-point grid and further 

linearly extrapolated in both directions for seven further equally distant points. This approach 

ensures that our constraint set is consistent with respect to each parameter given and, to a certain 

extent, literature-based. To determine the baseline loss-framing parameter, we convert the 

narrow framing and loss aversion parameter of the respective study together with our baseline 

stock market parametrization and our benchmark return to the loss framing value. For the model 

in which the stock follows a regime-switching process, we use the parameters of the stress 

regime 1 for the upper bound. The participation costs for the upper bound are translated by 

using the parameter value of Khorunzhina (2013) for CRRA preferences (equal to 0.044), which 

is multiplied by our average yearly labor income 𝑌̅ to obtain yearly costs. We impose several 

constraints on the parameter vector to ensure that economically unreasonable values are 

excluded. We restrict the subjective discount factor to be less than one, the EIS to be above zero 

and above the inverse of the maximum of the risk aversion parameter, the risk aversion term to 

be above one; we also require the bequest motive, the loss-framing strength, and the stock 

market participation costs to be equal to or greater than zero. The numerical value that satisfies 

these bounds up to the fourth decimal point serves as the ultimate bound for the respective 

parameter value in the grid. The literature-based parameter values, their sources, and the final 

extrapolated values are displayed in Table D.1. 

Similar to Catherine (2022) we perform a two-step approach for determining the best-

fitting parameter combination. In the first step, we carry out an exhaustive discrete parameter 

grid search over the entire parameter grid specified as before. The reason why we do not employ 

a global optimization algorithm33 in the first stage lies in the flexibility of our approach: we 

need to solve the model for all parameter combinations only once, while being able to extract a 

variety of empirical target combinations and specifications thereof. This allows us to perform 

the estimation for a given model specification for all relevant target variable combinations. 

Another advantage of this approach is that each parameter combination run is completely 

 
33 See Rios and Sahinidis (2013) for a review and comparison of derivative-free global and local optimization 

algorithms.  
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independent from the other runs, which allows the utilization of large-scale parallelization 

techniques over the parameter combinations to perform the entire estimation. This approach 

additionally allows us to split the problem and do the optimization runs in several batches, 

consequently reducing the risk of losing results. To obtain the parameter grid, we first construct 

a quasi-random point set from a Sobol sequence 𝚵 of length 𝑛 with a dimension of 𝑘, where 𝑘 

is equal to the number of continuous model parameters in vector 𝜽. We additionally skip the 

first 100 points of the sequence to mitigate the problem of an unbalanced sequence. This point 

set is multiplied by the upper and lower points of our parameter vectors resulting in the grid of 

parameter combinations implied by the Sobol sequence:  

𝚯s = 𝚵 ⨀ 𝚯𝑢 + (𝑱𝑛,𝑘 − 𝚵) ⨀ 𝚯
𝑙, (D.17) 

where ⨀ is the Hadamard product, 𝑱𝑛,𝑘 is an all-ones matrix of dimension 𝑛 × 𝑘, and 𝚯𝑢 and 

𝚯𝑙 are the parameter combination matrices that contain in each row the upper and lower 

parameters vector, respectively. The resulting parameter combination matrix 𝚯s is further 

supplemented by the loss benchmark parameter 𝑅𝑏, which is set to 𝑅𝑓, as the other economically 

reasonable value of one would be the same as upscaling the loss-framing parameter. The length 

𝑛𝑖 of the Sobol sequence for model specification 𝑖 is  

𝑛𝑖 =  min(7. 5
𝑘𝑖 , 200,000), (D.18) 

where 𝑘𝑖 is the dimension of the continuous parameter vector of model specification 𝑖. 

Furthermore, each 𝑛𝑖 is roughly rounded to some reasonable numerical value, which results in 

a sequence of length 3,500, 25,000, 200,000, and 200,000, for models with four, five, six, and 

seven parameters, respectively.34 

In the second step, we use the three best-fitting parameter combinations for each empirical 

target combination from the first step and run for each one a local optimization, where the 

respective parameter combination from the first step serves as the starting point. For the local 

optimization, we use a direct search algorithm, as it has several desirable properties for our 

purposes: it works for black-box optimization problems, it has a predetermined starting point, 

and it allows to some degree the utilization of parallelization techniques. As a search method 

we use a Mesh Adaptive Direct Search (MADS) algorithm (Audet and Dennis 2006; Abramson 

et al. 2009), which introduces randomness in the mesh construction and as poll method we use 

a Generalized Pattern Search (GPS) algorithm (Torczon 1997; Lewis and Torczon 1999), which 

uses a deterministic mesh construction. Both algorithms evaluate the objective function at a 

finite number of set points on a mesh in order to find an improved mesh point. We parallelize 

over all available directions of the mesh, which is dependent on the position of the parameter 

combination in the search space. We further set the mesh expansion to a value of 1.5 and the 

mesh contraction to a value of 2/2.5. We allow the algorithm to iterate up to 100 times, while 

at each iteration we use the maximum possible number of function evaluations. During the 

second step, the bounds of the parameter grid from the first step are still in effect. The best-

 
34 To counterbalance the shorter sequence length of the seven-parameter models, we perform the second step for 

those models twice. 
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fitting parameter combination of all runs is considered our global optimum and hence the 

estimate for the respective target moment combination and model. 

We further impose the constraint that there is only a preference for the early resolution of 

uncertainty with respect to the consumption-leisure stream. This is theoretically implied by 

Kreps and Porteus (1979) and Machina (1984) and supported by experimental evidence of 

Brown and Kim (2014) and Meissner and Pfeiffer (2022). Consequently, we do not perform the 

estimation for each parameter combination for which 𝛾 < 1/𝜓 holds. 
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Table D.1: Upper and Lower Bounds: Second-Stage Parameter Grid 

This table displays the upper and lower bounds for each of the continuous model parameters for the parameter 

grid for the first step during the determination of the SMM estimates. The literature-based lower and upper 

bounds with the respective source are shown for each parameter. To determine the baseline loss-framing 

parameter, we convert the narrow framing and loss aversion parameter of the respective study together with our 

capital market parametrization and our benchmark return to the loss-framing value. We proceed analogously 

for the loss-framing parameter Λ𝑅𝑆 in the regime-switching model, except that for the upper bound, the stock 

return parameters for the stress regime (regime 1) are used. Participation costs are in $1,000. Participation costs 

for the upper bound are translated using the parameter value 0.044 of Khorunzhina (2013), and then multiplied 

by our average yearly labor income 𝑌̅. The extrapolated bounds, which serve as the final lower and upper bounds 

of the parameter grid, are obtained by first linearly interpolating the literature-based bounds on an equidistant 

10-point grid and then extrapolating the function in both directions for seven further equally-distant points. The 

values displayed are the end values for both directions. We restrict the subjective discount factor to be less than 

one, the risk aversion to be above one; additionally the bequest motive, the loss-framing strength, and the stock 

market participation costs must be greater than or equal to zero. We further allow for a preference of early 

resolution of uncertainty, which is why the inverse of the EIS must be less than the coefficient of risk aversion. 

         
         

   Literature-Based Bounds  Extrapolated Bounds 

Parameter 
 

Lower 

Bound 
Source 

Upper 

Bound 
Source 

 Lower 

Bound 

Upper 

Bound 

𝛽 

 

0.90 
Li and Smetters 

(2011) 
0.99 

Gomes et al. 

(2022) 

 

0.8300 0.9999 

𝛼 

 

0.9 
Kim et al. 

(2016) 
1.3 Chai et al. (2011) 

 

0.5889 1.6111 

𝜓 
 

0.2 
Love and 

Phelan (2015) 
1.0 

Campbell et al. 

(2001) 

 

0.0989 1.6222 

𝛾 

 

3.0 
Cocco and 

Gomes (2012) 
10.0 

Cocco et al. 

(2005) 

 

1.0001 15.4444 

𝑏 

 

1.0 

Gomes and 

Michaelides 

(2005) 

5.0 
Polkovnichenko 

(2007) 

 

0.0000 8.1111     

Λ 
 

0.0010 
Chai and 

Maurer (2012) 
0.0248 

Calvet et al. 

(2022) 

 

0.0000 0.0444 

Λ𝑅𝑆 
 

0.0010 
Chai and 

Maurer (2012) 
0.1678 

Calvet et al. 

(2022) 

 

0.0000 0.2987 

χ 

 

0.3000 
Fagereng et al. 

(2017) 
1.6972 

Khorunzhina 

(2013) 

 

0.0000 2.7839 

         

         
 

L1  



72 

 

Appendix E: Additional Tables and Figures 

Table E.1: Model vs. Data Moments: Heterogeneous Agent Models  

This table compares the moments implied by the structural estimation and the empirical moments for each group 

of the heterogeneous agent model. The stockholder (30%) and non-stockholder (20%) group match their 

standalone target variables, while the blended group (50%) is estimated such that it minimizes the residual 

distance needed for the combined model to match the population moments. Data moments are estimated using 

data from the SCF (1989–2019) and the PSID (1975–2017), and by utilizing the methodology of Deaton and 

Paxson (1994). The model moments are the ones implied by the parameter combination that gives the best fit in 

the respective structural estimation and are the mean values from 100,000 simulated life cycles. Each of the 

seven age groups for the stock participation rate, the conditional stock share, and the financial wealth-to-income 

ratio consist of eight consecutive years of life, starting from 25 and ending with 80. Each age group for the work 

hours share uses six consecutive years of life, starting from 25 and ending with 66. 

        
        

 Age Group 

 1 2 3 4 5 6 7 

Panel A: Stockholder    

Panel A.1: Conditional Stock Share    

Data 0.3870 0.4240 0.4401 0.4632 0.4500 0.4201 0.4286 

Model 0.3909 0.4264 0.4406 0.4539 0.4398 0.4218 0.4378 

Panel A.2: Financial Wealth-to-Income Ratio    

Data 0.7471 1.0026 1.6499 2.6184 4.7334 7.4298 9.5641 

Model 0.7731 1.0298 1.5832 2.6962 4.6735 8.3233 8.0885 

Panel A.3: Work Hours Share    

Data 0.4184 0.4190 0.4189 0.4210 0.4184 0.4107 0.3897 

Model 0.4338 0.4076 0.4084 0.4117 0.4115 0.4102 0.4202 

Panel B: Non-Stockholder    

Panel B.1: Financial Wealth-to-Income Ratio    

Data 0.2626 0.3511 0.5517 0.7301 0.8600 1.4551 1.5251 

Model 0.2747 0.3549 0.5058 0.7134 0.9092 1.4593 1.4811 

Panel B.2: Work Hours Share    

Data 0.4184 0.4190 0.4189 0.4210 0.4184 0.4107 0.3897 

Model 0.4247 0.4154 0.4102 0.4028 0.4097 0.4091 0.4200 

Panel C: Blended Group 

Panel C.1: Stock Market Participation Rate     

Data 0.4380 0.5610 0.6792 0.6893 0.7041 0.5171 0.4509 

Model 0.4268 0.5856 0.6115 0.6594 0.6354 0.5169 0.5488 

Panel C.2: Conditional Stock Share     

Data 0.3870 0.4240 0.4401 0.4632 0.4500 0.4201 0.4286 

Model 0.3851 0.4188 0.4539 0.4847 0.4654 0.4380 0.3936 

Panel C.3: Financial Wealth-to-Income Ratio     

Data 0.4996 0.6376 1.0294 1.6036 2.7920 3.2311 3.3764 

Model 0.5542 0.7182 1.0067 1.3582 1.8377 3.1459 3.9484 

Panel C.4: Work Hours Share     

Data 0.4184 0.4190 0.4189 0.4210 0.4184 0.4107 0.3897 

Model 0.3946 0.3985 0.3995 0.3996 0.3994 0.3971 0.3933 
        

        
 

s 
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Figure E.1: Matching Results: Non-Stockholder Model 

(a) Financial Wealth-to-Income Ratio 
 

(b) Work Hours Share 

   

 

 

 

   

Notes: This figure compares the fit of the moments implied by the structural estimation of the life-cycle model 

for only non-stockholders with the data moments. The model moments are the ones implied by the parameter 

combination that gives the best fit in the structural estimation for the respective preference specification. Those 

moments are compared to the empirical moments estimated by using SCF data (1989–2019) and PSID data 

(1975–2017), and by utilizing the methodology of Deaton and Paxson (1994). In the structural estimation the 

variables financial wealth-to-income ratio for non-stockholders and work hours share are simultaneously 

targeted. The model moments are the mean values from 100,000 simulated life cycles based on optimal feedback 

controls. 
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Figure E.2: Matching Results: Blended Group Model 

(a) Stock Market Participation Rate 
 

(b) Conditional Stock Share 

   

 

 

 

   

(c) Financial Wealth-to-Income Ratio 
 

(d) Work Hours Share 

   

 

 

 

   

Notes: This figure compares the fit of the moments implied by the structural estimation of the life-cycle using 

the blended group of the heterogeneous agent models with the data moments. Model moments are those implied 

by the parameter combination that gives the best fit in the structural estimation for the respective preference 

specification. Those moments are compared to the empirical moments estimated by using SCF data (1989–

2019) and PSID data (1975–2017), and by utilizing the methodology of Deaton and Paxson (1994). In the 

structural estimation, the stock market participation rate, conditional stock share, financial wealth-to-income 

ratio, and work hours share are simultaneously targeted. The model moments are the mean `values from 100,000 

simulated life cycles based on optimal feedback controls. 
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